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Gradual typing is a principled approach to integrating static and dynamic type checking. To clarify what
gradual typing means, Siek and collaborators articulated criteria for gradually typed languages: essentially
that type checking and execution must smoothly transition between the two type checking regimes. However,
these criteria say nothing about the relationship between the semantics of gradual and static types. This
absence, which can be ascribed to gradual typing’s tendency to focus on simple types, becomes critical for
advanced type disciplines, where type safety does not imply type soundness. We assert a semantic criterion for
gradual types. To coherently blend static and dynamic checking of a particular type discipline, a gradual type
system must enforce the same invariants as those intended by its purely-static counterpart. We justify this
stance by considering several type disciplines, highlighting key challenges and opportunities.
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1 INTRODUCTION
After decades of acrimony between proponents of statically typed languages and dynamic lan-
guages, an air of cooperation has swept the community. Programmers and language designers alike
acknowledge that static and dynamic languages have complementary strengths, and many modern
languages aspire to combine the perceived benefits of both styles while evading their shortcomings.
This aspiration is not new, but a spate of recent industrial-strength languages has precipitated
new approaches to designing hybrid languages and inspired researchers to enrich programming
language theory to accommodate them [Savage 2014].

Arguably the most prominent current theory for designing such languages is gradual typing [Siek
and Taha 2006]. It introduces new notions to programming language design, like gradual types and
consistency, while building on prior techniques like casts and coercions. In addition to its technical
aspects, gradual typing researchers have introduced correctness criteria and formal foundations,
which together partially circumscribe what counts as a proper gradual language and how to extend
its fundamental notions to new languages and type disciplines [Garcia et al. 2016; Siek et al. 2015].

Since gradual typing builds directly on static typing, it is only natural that it inherits decades of
research into the design, evaluation, and implementation of statically typed languages. However,
because of its integration of notions from dynamic languages, which were not developed with types
in mind, gradual typing immediately highlights significant issues with our present understanding
of type systems, issues that do not necessarily arise when designing purely static languages. In
fact, these issues go to the very heart of type systems research, let alone gradual type systems, and
echo earlier distinctions about type systems that have fallen from prominence but find new life in
gradual typing.

Designing and characterizing principled gradual type systems forced us to revisit our understand-
ing of type safety and type soundness, which are often conflated in the literature. This conflation
causes no obvious technical problem for many type disciplines, but it becomes particularly critical
as we consider what guarantees a gradual type system should provide to programmers, how those
guarantees relate to those enforced by static and dynamic languages, and how these notions scale
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when gradualizing more sophisticated type disciplines. In fact, this distinction even expands the
design space of type systems that have already been gradualized, as we demonstrate by example.
Following a brief introduction to the principles of gradual typing that have developed over the

past decade, we highlight how certain fundamental concerns repeatedly arise when designing
gradual type systems. We point to type soundness as a critical and often misunderstood notion that
can be rehabilitated to address those concerns. To unpack these notions, we discuss several case
studies that highlight how type soundness should be a critical guiding principle for gradually-typed
languages.

2 GRADUAL TYPING IN A NUTSHELL
We briefly introduce gradual typing with the Gradually-Typed Lambda Calculus (GTLC) [Siek and
Taha 2006]; though simple, it exhibits most of the fundamental ideas. GTLC is a pure extension
of the Simply-Typed Lambda Calculus (STLC): every STLC program is a GTLC program, e.g.,
(λ f : Int → Int. f 7) (λx : Int. x). GTLC’s only syntactic addition is a new atomic type ?, called the
unknown type, which represents the omission, or intentional obscuring, of static type information.
It combines with static type information to form gradual types, like ? → Int and Bool → ?, which
represent imprecise static type information. Thanks to ?, programs that cannot be typed in STLC
can be typed and executed in GTLC, e.g., (λx : ? → ?. (x x) 7) (λx : ?. x) evaluates to 7.
GTLC statically rejects programs with local type inconsistencies, e.g., (λx : ? → ?. x 7) 8 is re-

jected since the number 8 could never have function type ? → ?. But type inconsistencies are
only checked locally, so ? can be used to obscure type inconsistencies, e.g., (λx : ? → ?. x 7) (8 :: ?)
ascribes the unknown type to 8, and the expression 8 :: ? could have any type so might have a
function type. GTLC accepts this program, but signals a runtime type error at this function call. This
ability to obscure type information enables GTLC to represent any program in the fully dynamic
lambda calculus (DLC), which has no type annotations and statically rejects only syntactically
ill-formed programs. For example, the (absurd) DLC program 7 3 is represented as the (still absurd)
GTLC program (7 :: ?) (3 :: ?).
Combining the benefits of static and dynamic languages was the initial inspiration for gradual

typing, and the main force driving its development. But the concepts scale beyond e.g., Python vs.
OCaml. In fact, “static” and “dynamic” can be viewed as relative concepts, where e.g., Scheme-style
unityping is more dynamic than OCaml-style static typing is more dynamic than Liquid Haskell-
style refinement typing [Vazou et al. 2014]. We now describe the principles of gradual typing, which
undergird a variety of gradual type systems [Bañados Schwerter et al. 2016; Jafery and Dunfield
2017; Lehmann and Tanter 2017].

Formalities. Gradual types are partially ordered by a precision relation ⊑ directed along increasing
imprecision, with fully static types as minimal elements. In GTLC, for instance, the chain Bool →
Int ⊑ Bool → ? ⊑ ? → ? ⊑ ? spans from a fully-precise static type to the fully imprecise unknown
type. Unlike subtyping, precision is covariant for function types because a ? in any position of a
type indicates missing static type information.

GTLC’s static semantics replaces type equality T = T with the novel consistency relation T ∼ T .
Consistency generalizes type equality to gradual types, interpreting imprecise type information
optimistically. It can be characterized in terms of precision: T1 ∼ T2 holds for two gradual types
if and only if T1 ⊒ T ′

1 = T ′
2 ⊑ T2 holds for some static types T ′

1 ,T
′
2 . In other words, consistency

lifts static type equality along the precision relation. This lifting applies to other type relations,
e.g. lifting subtyping to consistent subtyping [Garcia et al. 2016]. Since static types are minimal
with respect to precision, it immediately follows that consistency (resp. consistent subtyping)
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conservatively extends type equality (resp. subtyping): both relations are identical on static types.
The conservative extension of static typing concepts is a recurring theme in gradual typing.

Since gradual programs omit some static type information, their dynamic semantics must account
for gaps using runtime checks. Thus, a gradual program that successfully type checks may signal a
runtime check error, just like a dynamic language program.

Criteria. Over time, researchers have established formal criteria that gradually-typed languages
must satisfy [Siek and Taha 2006; Siek et al. 2015]. We briefly reprise those criteria, which we call
the STVCB criteria after their progenitors.
First, a gradual language conservatively extends some pre-conceived “fully static” language. In

GTLC’s case that language is STLC: GTLC accepts and rejects exactly the same precisely-typed
programs as STLC, and well-typed programs behave identically in both languages. Second, a
gradual language macro-expresses some pre-conceived “fully dynamic” language: source programs
can be desugared into the gradual language using only local compositional rewrites [Felleisen 1991].
For GTLC, that language is the dynamic calculus DLC. These criteria ensure that both extremes,
fully-static and fully-dynamic, can be combined seamlessly in a single language. One can even
define a hybrid language that blends STLC and DLC by straightforward translation to GTLC, which
acts as a unifying runtime [Garcia and Cimini 2015].
The third STVCB criterion constrains how typability and execution vary as the precision of a

program’s type information varies. These gradual guarantees are formalized in terms of successful
typing and execution, but are best understood in contrapositive form. The static gradual guarantee
ensures that an ill-typed gradual program will remain ill-typed no matter which way its types
are made more precise. The corresponding dynamic gradual guarantee ensures that a well-typed
program that signals a runtime check error will continue to do so, or become ill-typed, no matter
which way its types are made more precise. Both guarantees ensure that static and dynamic type
errors indicate some fundamental inconsistency with the underlying static type discipline.

The STVCB criteria still leave open a substantial design space, even after the dynamic and static
type disciplines are chosen [Siek et al. 2009]. This paper argues that this design space requires
further type-driven constraint if gradual typing is to reach its full potential.

3 GRADUAL TYPING IS ABOUT TYPING
In the above discussion of gradual typing, we intentionally omit a stated criterion for gradually
typed languages: that they must satisfy type safety, by which we mean that the semantics satisfy
a Wright-Felleisen style Progress and Preservation theorem, that well-typed programs don’t get
stuck [Wright and Felleisen 1994]. This theorem is often called type soundness, as though the
two notions are identical, and both are also associated with the tag line “well-typed programs
don’t go wrong [Milner 1978].” As observed by Siek et al. [Siek et al. 2015], this conception of
“soundness” is unsatisfying for gradual typing because, though well-typed programs don’t get stuck,
they definitely produce runtime type errors, i.e., they go wrong! In fact they must, otherwise GTLC
could not embed all DLC programs. Indeed, progress and preservation generally guarantee only
that the operational semantics is fully defined, i.e. that the only terminal runtime configurations
are the intended ones. It is in this sense that a language like DLC can be deemed type safe, thanks
to an especially boring type system [Harper 2012]!

Gradual typing researchers, ourselves included, have sought to clear this fly from the ointment
by adapting notions of blame from the contracts community [Findler and Felleisen 2002]. We argue
instead that much of this trouble can be addressed by recalling that type soundness and type safety
are not identical notions but are often closely related: type safety often implies type soundness.
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History. The first formalization of type soundness is due to Milner [Milner 1978], and though
that paper does in fact prove that well typed programs don’t go wrong, this fact is a corollary
to the soundness theorem, not the theorem itself. Soundness for type systems draws directly
from its analogue in mathematical logic, static analysis, and program logics. It states that, given
a system of logical judgments, a syntactic proof system for those judgments, and an intended
formal interpretation of those judgments, the proof system can prove a judgment only if its formal
interpretation holds semantically.
In mathematical logic, the quintessential example, a judgment is typically interpreted in set-

theoretic structures. Milner’s insight was to interpret typing judgments using denotational seman-
tics.1 In modern notation, he defines a judgment Γ |= t : T which is defined directly in terms of
the dynamic semantics of programs. This semantic judgment is taken as the intended behavioral
meaning of types. Then, he separately defines a syntactic judgment Γ ⊢ t : T essentially in the
standard inductive way. Armed with these, the statement of semantic type soundness is simply “if
Γ ⊢ t : T then Γ |= t : T ”, i.e., the type checker guarantees interesting local behavioral properties of
program fragments.
Milner’s theorem guarantees that programmers can use types to reason about their programs

in rich local ways, but nowadays, language researchers often recall the pithy corollary more than
the theorem.2 While the ability to eradicate an entire class of program bugs has great value, that
property has not carried over to gradual typing intact. We believe that type soundness can, and
should.

Is GTLC type sound? (take 1) On its own, this question does not make any sense, because as
recalled above from Milner, a type system is sound with respect to a given semantic judgment. So
before answering the question of whether GTLC (or any typed language for that matter) is sound,
one ought to be explicit about the intended meaning of types. As it turns out, several such meanings
can be formulated for any given typing discipline, even for a discipline as straightforward as simple
types, as we will see shortly.
Once the intended meaning of types is clearly stated, one can explicitly identify the type-based

reasoning principles that the type discipline enables. Type-based reasoning is a key asset for software
engineering because it is: i) modular : one can reason about a function or module just based on its
interface, independently of its implementation; ii) compositional: one can deduce new facts about
a program by combining knowledge about its parts, in a syntax-directed manner; iii) static: one
deduces information about the runtime behavior of a program without having to actually run it.

Reasoning with simple types. The simple typing discipline of STLC denotes the kinds of values
that can be obtained by reducing an expression. Crucially, value classification can be interpreted in
two ways, corresponding to partial or total correctness properties.3 The partial interpretation says
that if the reduction of a well-typed term terminates to a value, then that value has the predicted
type. Formally:4

If ⊢ t : T and t →∗ v then v : T
The total interpretation is stronger, saying that a well-typed term necessarily terminates, and

does so to a value of the predicted type. Formally:

1Milner and Tofte later adapted this to operational semantics [Milner and Tofte 1991].
2The original conception persists e.g. in work on foundational proof carrying code [Ahmed 2004].
3This nomenclature comes from program logics, where the distinction is common.
4For simplicity, we inline implications of type soundness, phrasing principles in terms of syntactic typing.
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If ⊢ t : T then t →∗ v and v : T
This corresponds exactly to strong normalization proofs for STLC, which is an explicitly desired
property in some contexts [Pierce 2002].

Additionally, the simple typing discipline offers reasoning principles on values, i.e. canonical form
lemmas, that are valid regardless of the chosen interpretation regarding partial or total correctness.
Examples of such reasoning principles are:

If ⊢ v : Int then v = n, for some integer n
If ⊢ v : T1 → T2 then v = λx : T1.t , such that x : T1 ⊢ t : T2

These reasoning principles are exploited to achieve safety without requiring runtime tag checks
before computational steps.
The fact that the STLC is strongly normalizing can be seen as a “side bonus” of the typing

discipline, if one is mostly interested in avoiding stuck terms without having to resort to dynamic
checks; this is by far the most common view on simple types, as presented in the classic literature
on type systems [Pierce 2002]. Alternatively, strong normalization can be considered a determining
feature of the discipline—and now safety-without-checks comes as a side bonus. Really the difference
is in the eyes of the beholder: both perspectives are legitimate, and the language designer must set
forth his or her intended principle.

Is GTLC type sound? (take 2) If simple types are meant to ensure partial correctness of value
classification, then GTLC is sound. The runtime semantics of GTLC does ensure that primitive
operators do not require exhaustive runtime checks; instead checks are only executed when
necessary to ensure that statically-made assumptions are not violated. Conversely, if simple types
are meant to ensure total correctness of value classification, then GTLC is unsound because
GTLC is not strongly normalizing. Indeed, one can define and run (indefinitely) the term omega
(λx : ?.x x) (λx : ?.x x) in GTLC. While this distinction may seem contrived for purposes of
programming languages, it represents a simple example of a circumstance where adding gradual
types can fundamentally change the properties that types guarantee. We analyze more advanced
examples in the next sections.

We observe that despite the attention that gradual typing has drawn, no termination-preserving
gradual language has been developed. Recent work in the contract literature demonstrates that
reasoning about termination can be codified and enforced using runtime monitors [Nguyễn et al.
2019]. As has often been the case with ideas from contracts, this technique may transfer smoothly
to gradual typing. well for gradual typing Garcia et al. [Garcia et al. 2016] do mention the possibility
of designing a language in which the unknown type only possibly denotes base types, but neither
develop such a design nor relate it to the termination property.5

Type safety vs. type soundness. In any typing discipline where types specifically denote the
class of values that a computation may return to the current program point—if the computation
yields any such value at all—a type safety proof plus the canonical forms lemma implies soundness
with respect to that interpretation. This logical implication explains the tendency for blurring the
difference between type safety and type soundness. In fact, Wright and Felleisen [1994] observe
a distinction between weak and strong soundness theorems, where the weak theorem directly
corresponds to Milner’s corollary and “establishes that a static type system achieves its primary
goal of preventing type errors...”. The paper takes this goal as the blueprint for syntactic type
safety, but they note that “it is possible to demonstrate a stronger property that relates the answer
produced to the type of the program.” This stronger theorem corresponds to Milner’s soundness
5Eremondi et al. [2019] use approximate normalization to ensure termination of compile-time evaluation at the type level.
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theorem, though the paper deems classification a side benefit compared to proving that well-typed
programs don’t go wrong.
In addition to simple types, other examples of such “partial value-based classification” typing

disciplines include subtyping, be it with records, objects, or even more semantic subtyping such as
types refined with logical formulas [Rondon et al. 2008]. For many expressive typing disciplines,
however, type safety does not imply type soundness, even when one is only concerned with partial
correctness. The next two sections present concrete examples of typing disciplines where this
disconnect arises: universally quantified polymorphic types and information-flow security types.

4 THE MEANING OF UNIVERSALLY QUANTIFIED TYPES
“I am convinced that a satisfactory model [of parametric polymorphism] should exclude
ad hoc polymorphism.”
– John Reynolds, 1983.

Universal quantification allows the definition of programs that are parametrized by types, using
type abstraction (ΛT .t ) and type application (t [T ]). In addition to the partial/total correctness
distinction, universal quantification admits two possible semantic interpretations.

Parametricity vs. genericity. Parametricity is the interpretation of type parameters that dictates
that a polymorphic value must behave uniformly for all possible instantiations [Reynolds 1983].
This implies that one can derive theorems about the behavior of a program by just looking at its
type, hence the name “free theorems” coined by Wadler [Wadler 1989]. For instance:6

If ⊢ v : ∀α .α → α , then for all ⊢ v ′ : T , we have v [T ] v ′ ≈ v ′.
Languages with quantification that also support intensional type analysis or reflection, like Java,

make it possible to define non-parametric functions. For instance, in Java, a generic method of type
∀α .α → α can use instanceof to discriminate when α is in fact String and behave differently in
such a case. For these languages, one can formulate a weaker property of quantified types that does
not dictate uniform behavior. We call this property genericity, by analogy to the name generics in
use in object-oriented languages like Java and C#.7 Genericity simply captures the fact that a value
of a quantified type can be instantiated at any type, and satisfy the resulting signature as expected.
For instance:

If ⊢ v : ∀α .α → α , then for all ⊢ v ′ : T , we have v [T ] v ′ : T .
Concretely, this means that if a value f has type ∀α .α → α , then genericity only tells us that

f [Int] 5 (if it terminates) reduces to some integer n, while parametricity tells us that f [Int] 5 (if it
terminates) reduces to 5.

Gradual genericity vs. gradual parametricity. Consider the following well-typed gradual pro-
gram, in which the add1 function is first given the unknown type, and then passed as argument to
functions g and h, both of which expect a function of type ∀α .α → α :
let add1 : ? = fun x => x+1
let g : (forall a.a->a) -> Int = fun f => if (f [Bool] true) then 1 else 0
let h : (forall a.a->a) -> Int = fun f => f [Int] 0
(g add1) + (h add1)

6Contextual equivalence ≈ specifies that two expressions cannot be distinguished in any valid context.
7The literature typically uses genericity and parametricity interchangeably, while for Java or C++ programmers, genericity
does not suggest the strong meaning of parametricity.
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The g function instantiates its argument at type Bool, while h instantiates it at type Int. When
executing g add1, a runtime cast error should be reported, in order to ensure safety. This error
reflects the fact that add1 is not a generic function.

In contrast, h add1 is safe, because add1 is an Int → Int function. Whether or not this application
violates soundness depends on the intended meaning of quantified types. If one is interested only
in genericity, then h add1 should execute without errors. If one expects parametricity, though, a
runtime violation should be reported: the type-based reasoning principle induced by parametricity
means that the programmer can legitimately expect any function of type ∀α .α → α (which is fully
precise) to be equivalent to the identity function.
Ahmed et al. first identified the challenges of respecting parametricity when introducing the

unknown type [Ahmed et al. 2011]. They introduce a cast calculus, not a gradual source language,
and have not formally established parametricity (it remains a conjecture). Cimini and Siek [Cimini
and Siek 2017] automatically derive a gradual language with universally quantified types, but only
prove type safety, so the gradual language satisfies (what we call) genericity, not parametricity.
Igarashi et al. [2017] introduce a polymorphic gradual calculus which, by safety, satisfies genericity.
Parametricity and the dynamic gradual guarantee are left as future work. More recently, Ahmed
et al. [2017] defines a polymorphic blame calculus that satisfies a relational parametricity theorem,
and demonstrate by example the utility for parametricity and their approach to achieving it.
Building on this work, Toro et al. [2019] define a gradually typed variant of System F which satisfies
parametricity, but in doing so highlights a possibly fundamental tension between parametricity
and the dynamic gradual guarantee. While progress and preservation are proven in the latter
two works, these theorems are not the basis for proving soundness. Each uses step-indexed logical
relations, an extension of techniques used in Reynolds [1983] to prove parametricity. These models
associate types with pairs of program fragments, so as to formalize rich behavioral invariants
like parametricity. Semantic typing for programs is defined in terms of this binary relation, and
syntactic typing is proven sound with respect to semantic typing. Ahmed [2004] provides a clear
and motivating introduction to this technique.

5 THE MEANING OF SECURITY TYPES
Information-flow security typing enables statically classifying program entities with respect to
their confidentiality levels, expressed via a lattice of security labels [Denning 1976]. For instance, a
two-level lattice L < H allows distinguishing public or low data (e.g. IntL) from confidential or high
data (e.g. IntH). An information-flow security type system statically ensures noninterference: high-
confidentiality data may not flow directly or indirectly to lower-confidentiality channels [Volpano
et al. 1996]. To do so, the security type system tracks the confidentiality level of computation
based on the confidentiality of the data involved. Note that similar to total vs. partial correctness, a
security type system can be designed to guarantee either termination-sensitive noninterference or,
more commonly, termination-insensitive noninterference.

Like parametricity, the reasoning principles supported by security typing dictate precise knowl-
edge about the (noninterfering) behavior of functions. For instance:

If ⊢ v : IntH → IntL, then for all ⊢ v1,v2 : IntH, we have v v1 = v v2 (if both terminate).

In words, because the argument is a secret and the return value is public, the result of applying the
function cannot possibly depend on its argument.
Disney and Flanagan [Disney and Flanagan 2011], and then Fennell and Thiemann [Fennell

and Thiemann 2013], designed security-typed languages dubbed gradual. They are both, however,
not gradual in the sense of the STVCB criteria (Sect. 2), because they are not based on precision
and the corresponding notion of consistency. In these languages, security types do not denote
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noninterference guarantees; they denote upper bounds on value labels. For instance, given a function
of type IntH → IntL, the only guarantee is that the argument is at most private; i.e. it can also
be public. Surprisingly, IntL as a type is more informative than IntH. Consequently, the function
can very easily reveal its argument, using a runtime security cast: λx .⟨IntL⟩x . At runtime, if the
argument value is labeled H, a runtime error is raised; if the argument is labeled L, the function
behaves as the identity, thereby violating the noninterference reasoning principle stated above.
This situation parallels the previous discussion about gradual parametricity. In these languages,
“value-label-based” noninterference is guaranteed by the runtime system; type-based reasoning
provides no static information about noninterference. Toro et al. [2018] introduces a gradually-
typed security language where gradual security types are fundamentally connected to modular
noninterference guarantees as well as to Siek et al. [2015]-style precision. Once again, progress and
preservation are proven for the type system in question, but the semantic soundness of security
types is established using step-indexed logical relations. The language achieves noninterference at
the expense of the dynamic gradual guarantee, and it remains an open question whether and to
what extent a language with the present feature set can achieve both simultaneously.

6 DESIGNING SOUND GRADUAL LANGUAGES
Designing a sound gradual language is not free of challenges, especially when the intended meaning
of types is a rich semantic property.
Recently, a couple of approaches have addressed the question of systematizing the design of

gradual languages. For instance, the Gradualizer aims at the automatic construction of a gradually-
typed language from the definition of statically-typed one [Cimini and Siek 2016, 2017]. The
Gradualizer’s scope, however, is restricted to adding only the unknown type to value-based type
disciplines.

Another approach, wider in scope but not automatic, is Abstracting Gradual Typing (AGT) [Gar-
cia et al. 2016]. AGT exploits an understanding of gradual types through the eyes of abstract
interpretation [Cousot and Cousot 1977] to allow for the systematic derivation of gradual lan-
guages. AGT has been applied to typing disciplines outside the scope of the Gradualizer, such as
effects [Bañados et al. 2014; Bañados Schwerter et al. 2016], refinement types [Lehmann and Tanter
2017], and the type disciplines of the previous two sections.
Both the Gradualizer and AGT do not directly address the soundness of the gradual language

with respect to the intended meaning of types. For instance, applying either approach to STLC
yields GTLC, which is non-terminating. Because soundness of refinement types is value-based,
applying AGT to a language with refinements yields a sound gradual language [Lehmann and
Tanter 2017]. However, in the case of security typing, we have shown that noninterference is
lost when the language includes references. A similar situation seems to occur with parametric
polymorphism: applying either methodology preserves genericity, but not the type-based reasoning
expected from parametricity. Recovering type-based reasoning demands ingenuity.
Recent work demonstrates that even gradual languages with value-classifying types benefit

from formalizing the semantics of types as (binary) relational properties. New and Ahmed [2018]
and New et al. [2019] construct semantic models of simple gradual types to more easily prove the
gradual guarantees for bespoke language designs and to justify type-based program optimizations.
This line of work points toward further practical and conceptual benefits for focusing on the
semantics of gradual types.

The current state-of-the-art in gradual language design is therefore greatly limited with respect
to type soundness; we believe that this is a major open challenge for gradual typing research. This
soundness challenge interferes with the expected graduality of the language. For instance, if one
would be willing to restrict gradual types to denote only base types, the resulting gradual language
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would trivially be terminating; however, such a gradual language could not macro-express DLC
anymore (Sect. 2).

Finally, other recent work points to shortcomings in the present criteria for gradual languages and
propose new criteria that we believe complement the consideration of type soundness. Greenman
et al. [2019] adapt the concept of complete monitoring from the behavioral contract literature to
gradual typing [Dimoulas et al. 2012]. They find that doing so provides another means for drawing
meaningful distinctions between the semantics of different gradual counterparts to the same static
type discipline.

7 CONCLUSION
We believe that it is important to develop a firm understanding of the pragmatic and theoretical
issues facing gradual typing if its ideas are to successfullymake their way intomainstream languages.
In particular, a proper generalization of gradual typing concepts can make complex type disciplines
usable in practice, by lowering the barrier to entry. However, for this to happen, we believe it’s
important to have a strong understanding of the conceptual challenges that gradual typing poses
to our current understanding of how to design and evaluate typed programming languages.
This submission distills some of our recent experience with designing and evaluating type

systems, focusing on how researchers think about types and what they bring to the table. Our
recent struggles with designing gradual type systems for increasingly sophisticated type disciplines
has uncovered some notable challenges in our understanding that must be addressed in order
to move forward. We find that certain simplifications (notably the conflation of type safety and
type soundness), which have been very fruitful for a long time, now haunt us when we try to
understand whether a gradual type system “makes sense.” Siek et al. [2015] already aimed at more
precisely characterizing what makes a language gradual. We believe it was a valuable first step,
and facilitated a substantial stream of advances in the gradual typing literature, as well as our
understanding of how to analyze and evaluate gradually typed language designs. We believe that
substantial conceptual gains are to be had by moving beyond type safety, which insufficiently
foregrounds the broader importance of considering the intended semantics of types.

Designing a gradually-typed language means much more than throwing in dynamic checks and
making sure that programs do not get stuck. We believe gradual language designers should be very
explicit about their intent with respect to both the spectrum of graduality—i.e. clearly specifying
what type disciplines bracket both ends—as well as with respect to the meaning of types—i.e. what
reasoning principles are preserved in the gradual language.
However, because most type systems focus on partial correctness for value classification, the

gradual typing community has tended to take type-based reasoning principles for granted, leaving
them un(der)specified. We have shown through three different examples that there are significant
semantic issues involved, which challenge current language designs.

In fact, our analysis calls for a type-soundness analogue to the gradual guarantee, capturing the
continuity of type-based reasoning with type precision. For instance, in security typing, when given
a function of type IntH → Int? → IntL, one cannot say whether the second argument influences
the result, but one must be firm about the first argument.

Finally, while there has been steady progress in systematizing the design of safe gradual languages
that satisfy the criteria of Siek et al., much remains to be done to understand how to design gradual
languages that are sound with respect to rich, possibly not value-based, semantics of types—if at
all possible. For instance, the AGT methodology is built on type safety proofs; gradual languages
derived through AGT inherit safety from this approach. Extending AGT to address soundness
might require adapting the whole conceptual framework to take the purely static type soundness
proofs as a source of design insight.
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