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Integrating static typing and dynamic typing has received considerable attention in academia and industry.

Gradual typing is one approach to this integration that preserves type soundness by casting values at run-time.

For higher order values such as functions and mutable references, a cast typically wraps the values in a

proxy that performs casts when the values are used. This approach suffers from two problems: (1) chains of

proxies can grow and consume unbounded space, and (2) statically typed code regions need to check whether

values are proxied. Monotonic references [Siek et al. 2015c] solve both problems for mutable references by

directly casting the heap cell instead of wrapping the reference in a proxy. In this paper we show how to

integrate monotonic references with the coercion-based solution to the first problem for other values such as

functions [Herman et al. 2007]. We present a space-efficient version of the semantics for monotonic references,

functions, and pairs and prove an upper bound on space overhead. Furthermore, the prior semantics for

monotonic references involved storing cast expressions (not yet values) on the heap and it is not obvious how

to implement this behavior efficiently in a compiler and run-time system. In our new semantics, only values

are written to the heap, making the semantics straightforward to implement. Finally, we provide a type safety

proof that is fully mechanized in Agda.
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1 WHAT ARE THE PERFORMANCE CHARACTERISTICS OF GRADUAL TYPING?

Gradual typing combines static and dynamic type checking, giving the programmer control over

which typing discipline to be used in each region of code [Anderson and Drossopoulou 2003;

Gronski et al. 2006; Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006]. Siek et al. [2015b]

describe five criteria for gradually typed languages, including type soundness and the gradual
guarantee. The type soundness criteria requires that the value of an expression must have the type

that was predicted by the type system. The gradual guarantee states that changing type annotations

should not change the semantics of the program, except that incorrect type annotations may induce

compile-time or run-time errors.

Type soundness is enforced, without compromising the expressive power of the language, by

performing runtime type checking at the boundaries between statically typed and dynamically

typed regions of code. This runtime overhead could be significant, depending on the nature of

the language and what kind of features are supported. For instance, for languages with nominal

types, the runtime check for whether a value has a given type is efficient and straightforward to

implement. Indeed, Muehlboeck and Tate [2017] show that Nom, a nominally-typed object-oriented

language (without generics or function types), exhibits low overheads. On the other hand, with

structural types, the runtime check can be much more complex, e.g., for higher-order values it

may involve the use of a proxy to mediate between a value and its context. For instance, casting
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a function value wraps it in a proxy [Findler and Felleisen 2002] that checks, at application sites,

whether the types of the input and output values matches that of the cast. Similarly, casting a

reference value wraps the reference in a proxy that checks at read sites if the value on the heap

could be cast to the type the context expects, and checks at write sites if the written value could be

cast to the type of the heap cell.

Using proxies to cast higher-order values causes two problems. First, each time a value of a

higher-order type crosses the boundary between a statically typed and dynamically typed code

regions, it gets wrapped in a proxy. These chains of proxies can grow without bounds, causing space

leaks Herman et al. [2007, 2010]. Furthermore, the chains of proxies can cause runtime slowdowns

to the extent of changing the asymptotic complexity of a program. Kuhlenschmidt et al. [2019]

demonstrate this problem with a simple quicksort program that is fully statically typed except for

one annotation, causing a proxy to be created around the vector being sorted at each recursive

call to the sort function. The runtimes collected from running the program on different input sizes

suggest that the asymptotic complexity changes from O(n2) to O(n3).
The second problem with using proxies is the overhead of runtime dispatch on higher-order

values at use sites. At each use site, the implementation must check whether the incoming value is

proxied, and if so, perform runtime checks before and/or after processing the underlying value.

This runtime dispatch is necessary even in statically typed code regions, because a reference from a

dynamically typed region may flow into a static region. Kuhlenschmidt et al. [2019] observe about

20% overhead in a statically-typed matrix multiplication benchmark. This problem prevents the

performance of statically-typed code in a gradually-typed programming language to be on par with

corresponding code in statically-typed programming languages.

The good news is that these two problems have been solved for the case of functions. Herman

et al. [2007, 2010] use the coercions of Henglein [1994] to compress chains by reducing sequences

of coercions to normal form and Siek et al. [2015a] define a recursive function for composing

coercions in normal form. Furthermore, Siek and Garcia [2012] solve the dynamic dispatch problem

for functions, while also compressing coercions, by using a closure representation that can act as

either a regular closure or as a proxy but with a uniform calling convention. This technique is used

in Grift [Kuhlenschmidt et al. 2019].

For mutable references, Herman et al. [2007, 2010] solve the first problem by compressing chains

of proxies using coercions, but their design does not solve the second problem of needing runtime

dispatch to handle proxies. Siek et al. [2015c] introduce an alternative design, called monotonic
references, that does not wrap addresses in proxies and instead casts values in the heap directly,

effectively solving the dynamic dispatch issue. However, Siek et al. [2015c] leave as future work the

challenge of identifying a normal form for coercions with monotonic references and of developing

a function for composing such coercions. Furthermore, their monotonic heap maps addresses

to expressions that are reduced using a small-step reduction relation. (Normally only values are

stored in the heap.) It is not obvious how to implement this reduction-in-the-heap in a compiled

implementation of a gradually-typed language.

In this paper, we answer the following questions.

Q.1 How to integrate monotonic references into a space-efficient coercion calculus?

Q.2 How to implement monotonic references in a way that only puts values in the heap?

We answer those questions by presenting a new reduction semantics for monotonic references

that is space-efficient for functions and that writes values only to the heap. To achieve the former,

we interpret casts as coercions [Henglein 1994; Herman et al. 2007, 2010] and extend the coercion

composition operator from prior work [Siek et al. 2015a], to also compose coercions for monotonic

references. Regarding the latter, we provide a cast function that returns a value (that can then
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be written to the heap) and a list of casts on addresses that are put into a queue for subsequent

processing, making the semantics straightforward to implement.

The rest of the paper is organized as follows: Section 2 illustrates the problem of chains of

function proxies and the importance of space-efficiency. Section 3 illustrates why prior work on

monotonic references wrote cast expressions to the heap. Section 4 gives an informal presentation

of our approach. Sections 5 and 6 present our approach formally and prove type safety.

2 THE PROBLEM OF CHAINS OF FUNCTION PROXIES

Proxies ensure that the type of a proxied value matches a certain type. Proxies are needed when it

is hard to check immediately if the type of a value matches some type. For instance, it is in general

impossible to check whether an arbitrary untyped function will return a Boolean without applying

it first. With proxies, the function gets wrapped in a proxy that performs the desired checks at

application sites. In this case, it checks if the incoming argument can be cast to the domain type of

the underlying function, and also checks if the return value could be cast to Boolean.

An important consequence of that wrapping, however, is that values could accumulate multiple

proxies when flowing through the boundaries between statically typed and dynamically typed

regions of code. Operations on such proxied values have to go through all the layers of proxies,

performing all their checks in order to access the underlying value.

This problem was first observed by Herman et al. [2007, 2010] in two higher-order, mutually

recursive functions. One of the functions expects a statically typed function as input and the other

expects a dynamically typed function, so implicit function casts are inserted to mediate between

the types. A function cast creates a run-time proxy wrapping the function being cast. Every time

one of the functions is called, a new proxy is created. These proxies consume space proportional to

the number of recursive calls.

With monotonic references there are no proxies on references, however the prior work did not

integrate the solutions for space efficiency on other higher-order values such as functions [Siek

et al. 2015c]. In this paper we combine monotonic references with space-efficiency for other values.

3 THE PROBLEM OF EXPRESSIONS ON THE HEAP

In this section we review how and why the prior semantics for monotonic references puts ex-

pressions on the heap [Siek and Vitousek 2013; Siek et al. 2015c]. Consider the following example

that creates a cycle in the heap, written in a variant of Typed Racket syntax that supports the

dynamic type Dyn to enable fine-grained gradual typing. (Typed Racket uses the term “box” to

mean reference. The Boxof type corresponds to the Ref type.)

1 (: f Dyn)

2 (define f (lambda (x) x))

3 (: r Dyn)

4 (define r (box (cons f '())))

5 (set-box! r (cons f r)) ;; establish a cycle

6 (define (g [x : (Boxof (Pair (Dyn -> Integer) (Boxof (Pair (Integer -> Dyn) Dyn))))])

7 ((car (unbox x)) 42))

8 (g r)

On line 2, a reference is allocated at some address, call it a, and placed in variable r ; the heap cell at

a is initialized with a pair of values of dynamic type. On line 3, a cycle is created by assigning to r
another pair whose second element is r . So at this point the heap is in the following state.

{a 7→ ⟨(λx .x)⟨⋆→ ⋆⇒ ⋆⟩,a⟨Ref (⋆×⋆) ⇒ ⋆⟩⟩}
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On line 6, function д is applied to r , but д expects a reference to a pair of type

(⋆→ Int) × Ref ((Int → ⋆) ×⋆)

So a cast will be performed before proceeding with the function application. Casting the pair

updates address a with the following expression, where values are colored purple and casts that

are about to be applied are colored magenta:

a 7→

〈
(λx .x)⟨⋆→ ⋆⇒ ⋆⟩⟨⋆⇒ (⋆→ Int)⟩,
a⟨Ref (⋆×⋆) ⇒ ⋆⟩⟨⋆⇒ Ref ((Int → ⋆) ×⋆)⟩

〉
The cast on the first element of the pair proceeds without further ado.

a 7→

〈
(λx .x)⟨⋆→ ⋆⇒ ⋆→ Int⟩,
a⟨Ref (⋆×⋆) ⇒ ⋆⟩⟨⋆⇒ Ref ((Int → ⋆) ×⋆)⟩

〉
The cast on the second element of the pair is a cast to a reference type, so it will cast address a to

the greatest lower bound (with respect to type precision) of its current type and the target type of

the cast, which amounts to:

(Int → Int) × Ref ((Int → ⋆) ×⋆)

This cast is interesting because it causes another cast on the first element of the pair. Proceeding

with a reduction step yields the following state.

a 7→

〈
(λx .x)⟨⋆→ ⋆⇒ ⋆→ Int⟩⟨⋆→ Int ⇒ Int → Int⟩,
a

〉
In the above sequence of reductions, it was crucial that the cast on the first element of the pair

to ⋆→ Int was written to the heap before the first element was cast again to the type Int → ⋆,
enabling a greatest lower bound of Int → Int that took both types into account.

Unfortunately, it is not obvious how to implement this process efficiently in a compiler and

runtime system. Literally placing expressions in the heap would require a runtime representation

of abstract syntax trees and an interpreter, which would be costly to implement and rather slow to

execute.

Alternatively, one might try to cast the value in a heap cell in one big step before writing it back

to the heap, but the straightforward version of this idea is problematic because of race conditions.

In the above example, the second cast on the first element, to Int → ⋆, would see the current type

as still ⋆→ ⋆, so the greatest lower bound would be Int → ⋆. This would break the monotonicity

property (and therefore type safety), because Int → ⋆ is not less precise than ⋆ → Int. In this

paper we present a refinement of the big-step approach. The key insight is that in the process of

casting the value in a heap cell, when we come to an address, instead of immediately casting it, we

leave the address as-is and instead put the address and the target type of the cast in a queue. Once

the entire value has been processed, we write the result value back to the heap and then cast the

addresses in the queue.

4 SPACE-EFFICIENCY AND VALUES ON THE HEAP

This section describes our approach to solve the two problems explained in Sections 2 and 3.

Section 4.1 describes the design of normal coercions for monotonic references and Section 4.2

describes our design of the new reduction semantics for monotonic references that only writes

values to the heap.
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4.1 Coercions in Normal Form for Monotonic References

To answer Q.1, we extend the prior work on coercions by [Kuhlenschmidt et al. 2019], designing

normal coercions for monotonic references and extending the coercion composition operator to

handle coercions that involve monotonic references.

A monotonic reference coercion holds just a type. To cast an address with some reference

coercion Ref T , we cast the value at that address from its type to the greatest lower bound of its

type and T . For convenient access, the type of a heap cell is stored next to the cell in the heap,

and we refer to it as the run-time type information (RTTI). Casting an address with a sequence of

two reference coercions amounts to taking the greatest lower bound of the RTTI and the types

those two coercions hold. This suggest that composing two reference coercions should create a

new reference coercion that holds a type that is the result of taking the greatest lower bound of

the types of the coercions being composed. However this definition causes subtle changes to the

coercion grammar and typing. This will be explained in more detail in Section 5.

4.2 Queue of Suspended Casts

To answer Q.2, we developed a new dynamic semantics for monotonic references, named λrefS , that

does not involve storing expressions on the heap. Instead, it uses a simple recursive function to cast

values in the heap down to values. To maintain the correctness of reference casts in the presence of

cycles, the function does not apply any inner reference casts. Instead it returns the address and puts

the inner reference cast in a queue. Reduction proceeds by examining the queue, so a suspended

cast is picked from the queue and gets applied. Applying a cast can return more suspended casts,

so those get appended to the queue. This process continues until the queue is empty.

The main insight behind this design is that the correct ordering of cast reduction is a top-down

breadth first traversal, as discussed in Section 3. With this semantics, the example in Section 3 can

be reduced correctly. Recall that the value at address a is allocated at type ⋆×⋆ and is cast to

(⋆→ Int) × Ref ((Int → ⋆) ×⋆)

Because the top-level cast is a reference cast, it will be pushed to the queue. Subsequently, the cast

will be read from the queue and applied to the pair in the heap. The cast on the first projection

will be ⋆⇒ ⋆→ Int and will fully reduce to a value. The cast on the second projection will be

suspended by reducing to the address a and the cast itself will be pushed to the queue. So this value

will be written to the heap as follows. (The RTTI for the heap cell is written after the colon.)

{a 7→ ⟨λx .x ⟨⋆→ ⋆⇒ ⋆→ Int⟩,a⟩ : (⋆→ Int) × Ref ((Int → ⋆) ×⋆)}

and the queue will contain the address a with the target type (Int → ⋆) × ⋆. Subsequently, the
address and its target type will be popped from the queue. The value at the address is cast from its

RTTI to the greatest lower bound of the RTTI and the target type. This results in the following

final state:

{a 7→ ⟨λx .x ⟨⋆→ ⋆⇒ Int → Int⟩,a⟩ : (Int → Int) × Ref ((Int → ⋆) ×⋆)}

Note that casting the function for the second time composed the old cast ⋆→ ⋆⇒ ⋆→ Int and

the new one ⋆ → Int ⇒ Int → Int into one cast ⋆ → ⋆ ⇒ Int → Int. This is a result of our

semantics being space-efficient. (The details of this composition is omitted here to simplify the

presentation of the reduction.)

It is worth noting that the length of the queue is bounded by the size of the value being cast.

This means that the queue cannot grow without bound, so the space overhead caused by the queue

is always a constant factor. This new approach is easier to understand and is straightforward to

implement in a runtime system for gradually-typed languages.
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5 COERCIONS IN NORMAL FORM FOR MONOTONIC REFERENCES

Coercions are combinators on types, originally designed for compile-time optimization for dynamically-

typed languages [Henglein 1994]. They were later use by Herman et al. [2007, 2010] to guarantee

space-efficiency at run-time for gradual typing. We follow suit and use coercions to guarantee

space-efficiency in λrefS , answering question Q.1.

There are many semantics for coercions [Siek et al. 2009]. In this paper, we use the Lazy-D

semantics which allows any type, other than ⋆ itself, to be injected directly to ⋆. Let I and J range
over types other than ⋆. We adapt the definition of coercions for monotonic references from Siek

et al. [2015c], adding a failure coercion of the form ⊥I, J
.

c,d ::= ι | I ! | I? | c → d | c × d | Ref T | ⊥I, J

To review, the identity coercion ι acts as the identity function. The coercion I ! is an injection into⋆
that tags v with the source type. The projection coercion I? projects the tagged value v from ⋆
to I by checking if the tag is consistent with I . If this is the case, the underlying value is returned.

The failure coercion ⊥ signals an error when the source and target types are not consistent. The

function coercion c → d creates a proxy around the function v that applies coercion c to the

argument and coercion d to the return value. The product coercion c × d applies coercion c to the

first projection and coercion d to the second projection. Finally, and most relevant to this paper,

the reference coercion Ref T casts the value in the heap to be at least as precise as T .
We now turn to identifying a normal form for coercions with monotonic references and a function

for composing them. We adapt the coercions in normal form of Kuhlenschmidt et al. [2019] (see the

appendix in the auxiliary archive). Coercions in normal form are defined by a grammar consisting of

three rules that enable coercion composition by a straightforward recursive function. This restricted

grammar makes sure that the longest coercion will be one that starts with a projection, followed by

a middle coercion, and ends with an injection. We adapt the normal form of Kuhlenschmidt et al.

[2019] by replacing the traditional reference coercion with one for monotonic references, removing

the duplicate identity coercion ι, and moving the failure coercion from final coercions to middle

coercions. Figure 1 presents our coercions in normal form and how to create and compose them,

which we describe next.

Our composition function # takes two coercions in normal form as input and returns a coercion

in normal form. It relies on two helper functions: #i that composes a final coercion with a coercion

in normal form and returns a coercion in normal form, and #
g
that composes two middle coercions

and returns a middle coercion.

Composing reference coercions. Composing two traditional reference coercions is done by compos-

ing the coercions for the read and the coercions for the write [Herman et al. 2007, 2010]. Composing

two monotonic coercions is different because they hold types instead that are used to cast the heap.

We merge the type of the two coercions by taking the greatest lower bound with respect to the

precision relation ⊑ (using the function ⊓). However, the function ⊓ is partial and is undefined

when the two input types are not consistent. In that case we return the failure coercion ⊥ instead,

which is why we move failure coercions into the grammar for middle coercions.

Our coercion composition function maps two well-typed coercions to a well-typed coercion.

Lemma 5.1 (Well-typed Composition). if c : T1 =⇒ T2 and d : T2 =⇒ T3, then c # d : T1 =⇒ T3

Proof. For the case Ref T #
g
Ref T ′

: We know that T ′ ⊑ T3 by Ref T ′
: T2 =⇒ T3. We also know

that (T ⊓T ′) ⊑ T ′
. By this and the transitivity of ⊑, we conclude that (T ⊓T ′) ⊑ T3. □

Our proof of that composition terminates relies on the fact that the sum of the sizes of the input

coercions gets smaller at each recursive call.
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Proposition 5.2 (Termination of Composition). size(c # d) ≤ size(c) + size(d)

To establish space-efficiency, we reason about the height of the created and composed coercions.

The definition of height we use is different from the one of Herman et al. [2007] because of the

difference in semantics between Lazy-UD and Lazy-D. Instead of injection and projection coercions

having a height of 1 in the former, they instead have the height of the types they carry.

Lemma 5.3 (Coercions height is bounded). ∥T1 ⇒ T2∥ ≤ max(∥T1∥, ∥T2∥)

Proof. By induction on the coercion creation T1 ⇒ T2. □

Proposition 5.4 (Composition height is bounded). ∥c # d ∥ ≤ max(∥c ∥, ∥d ∥)

Proof. By Lemma 5.3 and induction on the structure of the compose function c # d . □

A well-typed coercion in normal form consists of at most two sequences (three coercions or less),

so a space-efficient coercion bounded in height is also bounded in size.

6 λrefS DYNAMIC SEMANTICS

In this section, we present the reduction semantics for λrefS , and show how it answers both ques-

tions Q.1 and Q.2. Most of our answer to question Q.1 has been presented in Section 5. What

remains to show is how to restrict the reduction relation to use the composition function # to
combine adjacent coercions first before reducing expressions underneath. The approach we use is

fairly standard [Herman et al. 2007, 2010; Siek et al. 2015a; Siek and Wadler 2010]. We adjust our

notion of values, defined in Figure 2, to only allow at most one layer of casts. Then, a new rule for

composing coercions is introduced in the pure coercion reduction relation −→
;
c , defined in Figure 3.

Finally, expression reduction relation −→e , defined in Figure 4, is restricted such that reduction is

disallowed under a sequence of two or more casts. Typically, this restriction is implemented by

introducing a notion of cast-free evaluation context that does not have a cast application innermost

and requiring the reduction of cast expressions to occur in that cast-free context. Instead, we

use frames, which is a much simpler structure than evaluation contexts, and there is no need to

worry about different ways to decompose them. The frame for cast expressions is removed from

the grammar for frames, defined in Figure 2, and congruence rules for cast expressions is added

to −→e . Furthermore, the reduction relation is indexed by a flag that indicates whether the cast

congruence rule is allowed (cca) in the current context or whether it is disallowed (ccd). The cast

congruence rules, CastCong and CastCongE, require the flag cca, and they switch the flag of the

subexpression reduction to ccd. The rest of the rules are indexed by ccd. To allow rules indexed by

ccd to be also available in cca contexts, we include a subsumption rule, Switch, that flips the flag

from cca to ccd. This completes the presentation of our setup for space efficiency.

On the other hand, answering question Q.2 requires the definition of the heap to be a map

from addresses to pairs of values and types (Figure 2). This is achieved by changing how reference

reduction works as follows. Instead of writing a delayed cast expression to the heap, reducing a

reference cast creates a suspended cast and put it in a queue on the side (referred to by Ψ), without
actually changing the heap. This is done using the rule MonoCast of the program reduction

relation −→e , defined in Figure 4. The state reduction relation −→, defined in Figure 4, pauses

expression reduction if the queue is not empty and pops a suspended cast to reduce. For the

suspended cast on address a, the value mapped to this address gets cast from µ(a)rtti to µ(a)rtti ⊓T
using the apply-cast function, defined in Figure 3. The latter function fully reduces the cast to a

value while also suspending any inner reference casts creating another queue of suspended casts.

The result value gets written to the heap and the new queue gets appended to the old one. This
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Coercions (in normal form) c,d ::= (I? ; i) | i
Final coercions i ::= (д ; I !) | д
Middle coercions д ::= ι | c → d | c × d | Ref T | ⊥

Coercion typing c : T =⇒ T

ι : T =⇒ T

д : T =⇒ I

д ; I ! : T =⇒ ⋆

i : I =⇒ T

I? ; i : ⋆ =⇒ T ⊥ : T =⇒ T ′

c : T ′
1
=⇒ T1 d : T2 =⇒ T ′

2

c → d : T1 → T2 =⇒ T ′
1
→ T ′

2

c : T1 =⇒ T ′
1

d : T2 =⇒ T ′
2

c × d : T1 ×T2 =⇒ T ′
1
×T ′

2

T ⊑ T2

Ref T : Ref T1 =⇒ Ref T2

Middle coercion creation (I ⇒д I ) = i

(I ⇒д I ) = ι

(I ⇒д J ) = ⊥ if I ⌣̸ J

(T1 → T2 ⇒д T
′
1
→ T ′

2
) = (T ′

1
⇒ T1) → (T2 ⇒ T ′

2
)

(T1 ×T2 ⇒д T
′
1
×T ′

2
) = (T1 ⇒ T ′

1
) × (T2 ⇒ T ′

2
)

(Ref T ⇒д Ref T ′) = Ref T ′

Coercion creation (T ⇒ T ) = c

(I ⇒ ⋆) = ι ; I !
(⋆⇒ I ) = I? ; ι

(⋆⇒ ⋆) = ι
(I ⇒ J ) = I ⇒д J

Middle coercion composition д #
g
д = д

⊥ #
g
д = ⊥

д #
g
⊥ = ⊥

ι #
g
д = д

д #
g
ι = д

c → d #
g
c ′ → d ′ = (c ′ # c) → (d # d ′)

c × d #
g
c ′ × d ′ = (c # c ′) × (d # d ′)

Ref T #
g
Ref T ′ = ⊥ if T ≁ T ′

Ref T #
g
Ref T ′ = Ref (T ⊓T ′) if T ∼ T ′

Final coercion composition i #i c = c

(д ; I !) #i (J? ; i) = д #i ((I ⇒д J ) #i i)
д #i (д′ ; I !) = (д #

g
д′) ; I !

д #i д′ = д #
g
д′

⊥ #i i = ⊥

i #i ⊥ = ⊥

ι #i i = i
i #i ι = i

Coercion composition c # c = c

(I? ; i) # c = I? ; (i #i c) i # c = i #i c

Type height ∥T ∥

∥Int∥ = 1 ∥()∥ = 1 ∥⋆∥ = 1 ∥T1 → T2∥ = 1 +max(∥T1∥, ∥T2∥)

∥T1 ×T2∥ = 1 +max(∥T1∥, ∥T2∥) ∥Ref T ∥ = 1 + ∥T ∥

Coercion height ∥c ∥

∥ι∥ = 1 ∥⊥∥ = 1 ∥Ref T ∥ = 1 + ∥T ∥ ∥c → d ∥ = 1 +max(∥c ∥, ∥d ∥)

∥c × d ∥ = 1 +max(∥c ∥, ∥d ∥) ∥c ; I !∥ =max(∥c ∥, ∥I ∥) ∥I? ; c ∥ =max(∥I ∥, ∥c ∥)∥

Fig. 1. Normal coercions and their operations
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Uncoerced Values u ::= k | λ(x : T ). e | ⟨v,v⟩ | a
Values v ::= u | u⟨c → d⟩ | u⟨д ; I !⟩
Heap µ ::= ∅ | µ(a 7→ v : T )
SuspendedCasts Ψ ::= ∅ | (a,T );Ψ
Frames F ::= 2 e | v 2 | ⟨2, e⟩ | ⟨v,2⟩ | fst 2 | snd 2 |

ref 2@T | !2@T | !2 | 2 := e@T | v := 2@T

Fig. 2. Run-time structures for the space-efficient coercion calculus

apply-cast((u⟨c⟩),d) = apply-cast(u, (c # d))
apply-cast(a, (Ref T )) = just ((a,T ); ∅,a)

apply-cast(u, ι) = just (∅,u)
apply-cast(u, (c → d)) = just (∅,u⟨c → d⟩)
apply-cast(u, (д ; I !)) = just (∅,u⟨д ; I !⟩)

apply-cast(⟨v1,v2⟩, (c × d)) = just (Ψ ⊕ Ψ′, ⟨v ′
1
,v ′

2
⟩)

if

apply-cast(v1, c) = just (Ψ,v ′
1
),

apply-cast(v2,d) = just (Ψ′,v ′
2
)

apply-cast(_, _) = nothing

Fig. 3. apply-cast applies a coercion to a value and possibly returns a value and a queue of suspended casts.

process continues until there is no more suspended casts in the queue. Now the queue is empty,

the expression at hand can resume reduction. This way, only values are written to the heap.

State reduction. The state reduction relation −→ contains 5 rules, 4 of them deal with casting

the heap with a suspended cast from the queue. A step can be taken via rule UpdateHeap if the

suspended cast (a,T ) is productive, i.e. T ⊓ µ(a)rtti , µ(a)rtti, and successful, the result value of

the call to apply-cast gets written to the heap and the RTTI is updated accordingly. On the other

hand, if the cast fails, the Error1 rule reduces to error. Moreover, if the cast is not productive, i.e.

T ⊓ µ(a)rtti = µ(a)rtti, the NoChange rule drops it from the queue. Finally, if the target type of the

suspended cast is not consistent with the RTTI, the Error2 rule reduces to error.

Note that the apply-cast function maintains space-efficiency by composing the old coercion on

the value being cast and the new coercion.

Example. Now let’s consider how the example program in Section 3 reduces with the dynamic

semantics of λrefS . The cast expression we want to reduce is:

r ⟨(Ref ((⋆→ Int) × Ref ((Int → Int) ×⋆)))⟩

and the heap is:

a 7→ ⟨f ⟨ι ; (⋆→ ⋆)!⟩,a⟨ι ; (Ref (⋆×⋆))!⟩⟩ : ⋆×⋆

Reduction will proceed by applying rule Cast/Succeed reducing the expression to the address a
and putting the cast in the queue. The queue Ψ will be (a, (⋆→ Int) × Ref ((Int → Int) × ⋆)), ∅.
Next, rule UpdateHeap will be used to pop the cast from the queue, apply it to the value in the

heap, write the new value and the new RTTI to the heap, and add the inner reference cast to the

queue. The heap will be updated as follows:

a 7→ ⟨f ⟨(ι → (Int? ; ι))⟩,a⟩ : (⋆→ Int) × Ref ((Int → Int) ×⋆)

and the queue will be (a, (Int → Int) ×⋆), ∅. Finally, reduction will apply UpdateHeap to perform

the cast in the queue. The final heap will be:

9
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Pure reduction rules e −→;
e e

fst ⟨v1,v2⟩ −→
;
e v1

snd ⟨v1,v2⟩ −→
;
e v2

(λ(x : T ).M) v −→
;
e [x := v]M

(u⟨c → d⟩)v −→
;
e (u (v ⟨c⟩))⟨d⟩

Reference operations reduction rules e, µ −→
#
e e, µ,Ψ

ref v@T , µ −→
#
e a, µ(a 7→ v : T ), ∅ if a < dom(µ) (Alloc)

!a, µ −→
#
e µ(a)

val
, µ, ∅ (Read)

!a@T , µ −→
#
e µ(a)

val
⟨µ(a)rtti ⇒ T ⟩, µ, ∅ (DynRead)

a := v, µ −→
#
e Unit, µ(a 7→ v : µ(a)rtti), ∅ (Update)

a := v@T , µ −→
#
e Unit, µ(a 7→ v ′

: µ(a)rtti),Ψ if apply-cast(v, (T ⇒ µ(a)rtti)) = just (Ψ,v ′)

(DynUpdate)

a := v@T , µ −→
#
e error, µ, ∅ if apply-cast(v, (T ⇒ µ(a)rtti)) = nothing (DynUpdateFail)

Program reduction rules e, µ −→e e, µ,Ψ

Switch

M, µ −→ccd

e N , µ,Ψ

M, µ −→cca

e N , µ,Ψ
Pure

M −→
;
e N

M, µ −→ccd

e N , µ, ∅
Ref

M, µ −→
#
e N , µ ′,Ψ

M, µ −→ccd

e N , µ ′,Ψ

Cast/Succeed

apply-cast(v, c) = just (Ψ,v ′)

v ⟨c⟩, µ −→ccd

e v ′, µ,Ψ
Cast/fail

apply-cast(v, c) = nothing

v ⟨c⟩, µ −→ccd

e error, µ, ∅

Cast/compose

M ⟨c⟩⟨d⟩, µ −→ccd

e M ⟨c # d⟩, µ, ∅

Cong

M, µ −→cca

e N , µ ′,Ψ

F [M], µ −→ccd

e F [N ], µ ′,Ψ
CongErr

F [error], µ −→ccd

e error, µ, ∅

CongCast

M, µ −→ccd

e N , µ ′,Ψ

M ⟨c⟩, µ −→cca

e N ⟨c⟩, µ ′,Ψ
CongCastE

error⟨c⟩, µ −→cca

e error, µ, ∅

State reduction rules e, µ,Ψ −→ e, µ,Ψ

ProgReduce

e, µ −→e e
′, µ,Ψ

e, µ, ∅ −→ e ′, µ,Ψ
UpdateHeap

T ′ = T ⊓ µ(a)rtti T ′ , µ(a)rtti
apply-cast(µ(a)

val
, (µ(a)rtti ⇒ T ′)) = just (Ψ′,v ′)

e, µ, (a,T );Ψ −→ e, µ(a 7→ v ′
: T ′),Ψ ⊕ Ψ′

NoChange

T ⊓ µ(a)rtti = µ(a)rtti

e, µ, (a,T );Ψ −→ e, µ,Ψ
Error1

T ′ = T ⊓ µ(a)rtti T ′ , µ(a)rtti
apply-cast(µ(a)

val
, (µ(a)rtti ⇒ T ′)) = nothing

e, µ, (a,T );Ψ −→ error, µ,Ψ

Error2

T ≁ µ(a)rtti

e, µ, (a,T );Ψ −→ error, µ,Ψ

Fig. 4. Dynamic semantics for the space-efficient coercion calculus
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a 7→ ⟨f ⟨((ι ; Int!) → (Int? ; ι))⟩,a⟩ : (Int → Int) × Ref ((Int → Int) ×⋆)

Now the queue is empty, expression reduction will resume and the program will evaluate to 42.

6.1 Type Safety

A lot of the definitions and lemmas used to prove type safety are shared between λrefC and λrefS , so to

highlight the important parts of the proof and to avoid duplication, they will be presented in the

appendix only.

Definition 6.1 (Well-defined suspended casts queues). A queue of suspended casts Ψ is well-defined

with respect to heap typing Σ, written Σ ⊢ Ψ, iff ∀a,T . ∀(a,T ) ∈ Ψ implies a ∈ Σ.

The queue of suspended casts plays a role in typing as well as in reduction. More specifically,

the typing of values in the heap depends on both the heap typing and the queue of suspended casts.

We combine both using the following function, merge.

Definition 6.2 (Merging Heap Typing and Suspended Casts Queue).

merge (Σ, ∅) = Σ
merge (Σ, ((a,T );Ψ)) = merge ((Σ(a 7→ (T ⊓ Σ(a)))), Ψ) if Σ(a) ∼ T
merge (Σ, ((a,T );Ψ)) = merge (Σ, Ψ) if Σ(a) ≁ T

Definition 6.3 (Well-typed heaps). A heap µ is well-typed with respect to heap typing Σ and queue

of suspended casts Ψ, written Σ | Ψ ⊢ µ, iff ∀a,T . Σ(a) = T implies ∃ v s .t . merge (Σ, Ψ) | ∅ ⊢ v : T
and µ(a) = v : T .

Lemma 6.4 (Populating the Queue). If Σ ⊢ Ψ, then, ∀ Ψ′, s .t . Σ ⊢ Ψ′, merge (Σ, (Ψ ⊕ Ψ′)) ⊑p
merge (Σ, Ψ)

From Lemma C.4, we have the following corollary.

Corollary 6.5 (Heap cast). If Σ ⊢ (a,T ′);Ψ and Σ | (a,T ′);Ψ ⊢ µ and (merge (Σ, Ψ)) | ∅ ⊢ v : T
and µ(a) = v : T , then address a can be cast to type Ref (T ⊓T ′) such that Σ(a 7→ (T ⊓T ′)) | Ψ ⊕ Ψ′ ⊢

µ(a 7→ v ′
: (T ⊓T ′)) if such v ′ and Ψ′ exist.

Proof. By cases on the result of (apply-cast(v, (T ⇒ (T ⊓T ′)))):

nothing : We conclude with a cast error.

just (Ψ′,v ′) : Let Σ′ = Σ(a 7→ (T ⊓T ′)). From (T ⊓T ′) ⊑ T and Σ | (a,T ′);Ψ ⊢ µ we have (T ⊓T ′) ⊑

Σ(a) which implies Σ′ ⊑p Σ. Also, by the definition of merge, we have merge (Σ′, Ψ) =
merge (Σ, ((a,T ′);Ψ)), so from that and Lemma 6.4, we have that merge (Σ′, (Ψ ⊕ Ψ′)) ⊑p
merge (Σ′, Ψ) ⊑p merge (Σ, ((a,T ′);Ψ)). Next, Lemma C.4 is applied to all values in the heap

and to v ′
, so we get (merge (Σ′, (Ψ ⊕ Ψ′))) | ∅ ⊢ v ′

: (T ⊓T ′), thus Σ′ | Ψ ⊕ Ψ′ ⊢ µ(a 7→ v ′
:

(T ⊓T ′)).

□

Lemma 6.6 (Progress with suspended casts). If Σ ⊢ Ψ and Σ | Ψ ⊢ µ and Ψ , ∅ and
merge (Σ, Ψ) | ∅ ⊢ M : T , then ∃ µ ′ s .t . M, µ,Ψ −→ M, µ ′,Ψ′

Proof. Because Ψ is not empty, ∃ a,T ,Ψ′. s .t . Ψ = (a,T );Ψ′
. By cases on how T and µ(a)rtti are

related, a step is taken as follows:

T ∼ µ(a)rtti and T ⊓ µ(a)rtti , µ(a)rtti: By cases on the result of (apply-cast(µ(a)val, (µ(a)rtti ⇒

T ))):
nothing: A step is taken via Error1.

just (v,Ψ′′): A step is taken via UpdateHeap.
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T ∼ µ(a)rtti and T ⊓ µ(a)rtti = µ(a)rtti: A step is taken via NoChange.

T ≁ µ(a)rtti: A step is taken via Error2.

□

If the queue of suspended casts is empty, then the progress lemma is standard.

Lemma 6.7 (Progress with no suspended casts). If Σ | ∅ ⊢ µ and Σ | ∅ ⊢ M : T , then either
(1) M is a value, or
(2) M = error, or
(3) ∃ Ψ,N , µ ′ s .t . M, µ, ∅ −→ N , µ ′,Ψ

From Lemmas 6.6 and 6.7, we assemble the full proof of progress by cases on whether the queue of

suspended casts is empty:

Corollary 6.8 (Progress). If Σ ⊢ Ψ and Σ | Ψ ⊢ µ and merge (Σ, Ψ) | ∅ ⊢ M : T , then either
(1) M is a value, or
(2) M = error, or
(3) ∃ N , µ ′ s .t . M, µ,Ψ −→ N , µ ′,Ψ′

Lemma 6.9 (Type preservation). If Σ ⊢ Ψ and Σ | Ψ ⊢ µ and merge (Σ, Ψ) | ∅ ⊢ M : T and
M, µ,Ψ −→ N , µ ′,Ψ′, then ∃ Σ′ s .t . Σ′ ⊢ Ψ′ and merge (Σ′, Ψ′) | ∅ ⊢ N : T and Σ′ | Ψ′ ⊢ µ ′ and
Σ′ ⊑p/e Σ and merge (Σ′, Ψ′) ⊑p/e merge (Σ, Ψ)

From Corollary 6.8 and Lemma 6.9, we prove type safety.

Theorem 6.10 (Type safety). If Σ ⊢ Ψ and Σ | Ψ ⊢ µ and merge (Σ, Ψ) | ∅ ⊢ e : T , then either
(1) e diverges, or
(2) e = error, or
(3) ∃ v, Σ′, µ ′ s .t . e, µ,Ψ −→∗ v, µ ′, ∅ and Σ′ | ∅ ⊢ v : T and Σ′ | ∅ ⊢ µ ′

The semantics and proof of type safety is fully mechanized in Agda proof assistant and it is

available in the following URL:

https://github.com/deyaaeldeen/monotonic.

7 RELATEDWORK

We conjecture that the space-efficient semantics for λrefS that we define in this paper yields the same

observable behavior as that of the non-space-efficient semantics λrefC , which is the semantics of

[Siek et al. 2015c] with some corrections. We define λrefC in Appendix B.

In the following we discuss some additional related work regarding both monotonicity and space

efficiency.

Monotonicity. Fähndrich and Leino [2003] present a statically checkable typestate system where

objects may flow from less restrictive to more restrictive typestates, but not vice versa. Monotonic

references is different in that they require run-time checks in partially typed code regions to

maintain the monotonicity invariant.

Bierman et al. [2010] provide formal operational semantics for C
♯
with the dynamic type added,

named FC
♯
4
. It uses an RTTI-based approach and subtype checks to implement casts. However, their

approach is for a class-based object-oriented language as opposed to ML-like structural reference

type that our work is based on. In particular, their work does not use the consistency relation and

instead extends the implicit type conversion relation such that a type can be cast to dynamic if it
can be cast to object.
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Rastogi et al. [2015] and Swamy et al. [2014] integrate static and dynamic typing in the context

of TypeScript with the TS
⋆
and Safe TypeScript languages. Both use a notion of monotonicity in

the heap where each object is instrumented with RTTI, but with respect to subtyping, treating ⋆
as a universal supertype, instead of with respect to the precision relation. Furthermore, they are

different from monotonic references in that they inherit the overhead of dynamic typing because

they compile to JavaScript. Moreover, in Safe TypeScript, the object’s RTTI gets updated when a

read field operation is performed. In monotonic references, reading from the heap does not change

the RTTI.

Space efficiency. Siek and Wadler [2010] represent casts by threesomes and provide a composition

operator of threesomes that uses the greatest lower bound function on types. Furthermore, they

provide a compilation from threesomes to coercions and show how to compose them based on

threesomes composition. Siek and Garcia [2012] define a space-efficient abstract machine for the

gradually-typed lambda calculus based on coercions. Greenberg [2015] Provides a composition

operator for manifest contracts, contracts that check stronger properties than simple types. However,

reference types are not addressed in all aforementioned work.

8 CONCLUSION

Monotonic references is a design for gradually-typed mutable references that improves over the

traditional design as they incur zero-overhead for reference operations in statically-typed code

regions while maintaining the full expressiveness of gradual typing. However, prior work on

monotonic references presented reduction semantics that writes cast expressions to the heap

that reduce using a small-step reduction relation. It is not straightforward to implement such a

process efficiently in a compiler and runtime system for gradually-typed languages. Furthermore,

earlier work did not guarantee space-efficiency, a key property to ensure runtime efficiency in

implementations of gradually-typed languages.

In this paper, we present novel dynamic semantics for monotonic references that is space-efficient

and that only writes values to the heap. The former is accomplished by identifying a normal form

for coercions with monotonic references and by extending the composition function accordingly.

Moreover, in our dynamic semantics, we apply a cast to a value using a simple recursive function

that suspends inner casts of references by putting them in a queue. This process is straightforward

to implement in a runtime system for a gradually-typed language. Finally, we provide a type safety

proof that is fully mechanized in Agda.
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Expressions e,M,N ::= k | λx . e | e e | ⟨e, e⟩ | fst e | snd e | ref e | !e | e := e

Fig. 5. GTLC
+
syntax

Types

Base Types B ::= () | Bool | Int

Injectables I , J ::= B | T → T | T ×T | Ref T
Types T , S ::= ⋆ | I

Consistency T ∼ T

⋆ ∼ T T ∼ ⋆ B ∼ B
T1 ∼ T2

Ref T1 ∼ Ref T2

T1 ∼ T3 T2 ∼ T4

T1 → T2 ∼ T3 → T4

T1 ∼ T3 T2 ∼ T4

T1 ×T2 ∼ T3 ×T4

Shallow consistency T ⌣ T

⋆⌣ T T ⌣⋆ B ⌣ B
Ref T1 ⌣ Ref T2 T1 → T2 ⌣ T3 → T4 T1 ×T2 ⌣ T3 ×T4

Type preciseness T ⊑ T

T ⊑ ⋆ B ⊑ B
T1 ⊑ T2

Ref T1 ⊑ Ref T2

T1 ⊑ T3 T2 ⊑ T4

T1 → T2 ⊑ T3 → T4

T1 ⊑ T3 T2 ⊑ T4

T1 ×T2 ⊑ T3 ×T4

Static types I T

I B
I T

I Ref T

I T1 I T2
I T1 → T2

I T1 I T2
I T1 ×T2

Meet operation (greatest lower bound) T ⊓T = T

⋆⊓T = T ⊓⋆ = T B ⊓ B = B

Ref T1 ⊓ Ref T2 = Ref (T1 ⊓T2)

(T1 ×T2) ⊓ (T3 ×T4) = (T1 ⊓T3) × (T2 ⊓T4)

(T1 → T2) ⊓ (T3 → T4) = (T1 ⊓T3) → (T2 ⊓T4)

Fig. 6. Types and their operations

A TYPE SYSTEM OF GTLC
+

The syntax of the surface language, GTLC
+
, is given in Figure 5. GTLC

+
has functions and pairs in

addition to references. Figure 6 describes supported types and relations and functions on them. We

use the symbol ⋆ to represent the dynamic type. Consistency and type preciseness relations are

typical [Siek and Taha 2006; Siek et al. 2015b; Wadler and Findler 2009]. Shallow consistency [Siek

and Wadler 2010] is needed to implement lazy error detection. The unary relation I holds for types
that do not contain ⋆. Finally, the ⊓ function computes the greatest lower bound of the input types.

As with any other gradually-typed language, GTLC
+
is compiled to a statically-typed cast

calculus, by inserting casts. The cast calculus uses coercions [Henglein 1994] for cast specification.

Figure 7 presents the syntax and the type system. Addresses a are required by rule WT-Addr to

have a type Ref T where Σ(a) ⊑ T . This restriction makes sure for each address a, ∀r = a and

r : Ref T , that Σ(a) ∼ T , i.e. the types of all references are always consistent with the type of the

value in the heap. Expression forms for operations on references are unusual in that there are two

forms for each operation, one to be used in fully static code regions and the other to be used in

other regions [Siek et al. 2015c]. In particular, !e and e := e correspond to load and store machine
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Expressions e,M,N ::= k | λ(x : T ). e | e e | ⟨e, e⟩ | fst e | snd e | e ⟨c⟩ |
a | ref e@T | !e | !e@T | e := e | e := e@T | error

Typing environment Γ ::= ∅ | Γ,x : T
Heap typing Σ ::= ∅ | Σ,a : T

Expression typing Σ | Γ ⊢ M : T

Σ | Γ ⊢ k : type(k)

(x : T ) ∈ Γ

Σ | Γ ⊢ x : T

Σ | Γ ⊢ M : T1 → T2 Σ | Γ ⊢ N : T1

Σ | Γ ⊢ M N : T2

Σ | Γ,x : T1 ⊢ M : T2

Σ | Γ ⊢ λ(x : T1).M : T1 → T2

Σ | Γ ⊢ M : T1 Σ | Γ ⊢ N : T2

Σ | Γ ⊢ ⟨M,N ⟩ : T1 ×T2

Σ | Γ ⊢ ⟨M,N ⟩ : T1 ×T2

Σ | Γ ⊢ fstM : T1

Σ | Γ ⊢ ⟨M,N ⟩ : T1 ×T2

Σ | Γ ⊢ sndM : T2

Σ | Γ ⊢ M : T

Σ | Γ ⊢ refM@T : Ref T

Σ | Γ ⊢ M : Ref T IT
Σ | Γ ⊢ !M : T

Σ | Γ ⊢ M : Ref T ̸I T
Σ | Γ ⊢ !M@T : T

Σ | Γ ⊢ M : Ref T Σ | Γ ⊢ N : T IT
Σ | Γ ⊢ M := N : ()

Σ | Γ ⊢ M : Ref T Σ | Γ ⊢ N : T ̸I T
Σ | Γ ⊢ M := N@T : ()

WT-Addr

Σ(a) ⊑ T

Σ | Γ ⊢ a : Ref T Σ | Γ ⊢ error : T

Σ | Γ ⊢ M : T c : T =⇒ T ′

Σ | Γ ⊢ M ⟨c⟩ : T ′

Fig. 7. Syntax and type system of the coercion calculus

instructions and should be used in static code regions as they do not perform any checks. This is

true because monotonic references have a unique canonical form which is just addresses, so unlike

proxied references [Herman et al. 2007, 2010], there is no dynamic dispatch on whether the address

is proxied. Also, by the typing rule for addresses WT-Addr, the type of a heap cell must be as

precise as or more precise than all references to it, so it must be the case that the type of the value in

the heap matches the type of the statically typed reference. On the other hand, !e@T and e := e@T
are reserved for other code regions where the reference type is not static. The type annotation T
records the type of the reference. The type of the value in the heap might be more precise thanT , so
a cast is needed between them. Asking the programmers to use both forms would be inconvenient.

Fortunately, the compiler can automatically select which form to emit. Cast insertion, defined in

Figure 8, is a type-directed compilation from GTLC
+
to the coercion calculus including compiling

to the right form of a reference operation based on the type of the reference. Rules CI-SRead and

CI-SWrite check if the reference type is static to compile the operation form to the corresponding

efficient one. Rules CI-Read and CI-Write compile to the other forms. The CI-Allocation rule

compiles the allocation form to one that records the reference type. The recorded type annotation

is used to initialize the run-time type information (RTTI) of the heap cell. The other rules for typing

and cast insertion are standard.
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Cast insertion Σ | Γ ⊢ M ↪→ N : T

Σ | Γ ⊢ k ↪→ k : type(k)

(x : T ) ∈ Γ

Σ | Γ ⊢ x ↪→ x : T

Σ | x : T1, Γ ⊢ M ↪→ N : T2

Σ | Γ ⊢ λ(x : T1).M ↪→ λ(x : T1).N : T1 → T2

Σ | Γ ⊢ M ↪→ M ′
: T1 → T2 Σ | Γ ⊢ N ↪→ N ′

: T ′
1

Σ | Γ ⊢ M N ↪→ M ′ (N ′⟨T ′
1
⇒ T1⟩) : T2

Σ | Γ ⊢ M ↪→ M ′
: ⋆ Σ | Γ ⊢ N ↪→ N ′

: T

Σ | Γ ⊢ M N ↪→ (M ′⟨⋆⇒ (⋆⇒ ⋆)⟩) (N ′⟨T ⇒ ⋆⟩) : ⋆

Σ | Γ ⊢ M ↪→ M ′
: T1 Σ | Γ ⊢ N ↪→ N ′

: T2

Σ | Γ ⊢ ⟨M,N ⟩ ↪→ ⟨M ′,N ′⟩ : T1 ×T2

Σ | Γ ⊢ M ↪→ N : T1 ×T2

Σ | Γ ⊢ fstM ↪→ fst N : T1

Σ | Γ ⊢ M ↪→ N : T1 ×T2

Σ | Γ ⊢ sndM ↪→ snd N : T2

Σ | Γ ⊢ M ↪→ N : ⋆

Σ | Γ ⊢ fstM ↪→ fst (N ⟨⋆⇒ ⋆×⋆⟩) : ⋆

Σ | Γ ⊢ M ↪→ N : ⋆

Σ | Γ ⊢ sndM ↪→ snd (N ⟨⋆⇒ ⋆×⋆⟩) : ⋆

CI-Allocation

Σ | Γ ⊢ M ↪→ N : T

Σ | Γ ⊢ refM ↪→ ref N@T : Ref T
CI-SRead

Σ | Γ ⊢ M ↪→ N : Ref T IT
Σ | Γ ⊢ !M ↪→ !N : T

CI-Read

Σ | Γ ⊢ M ↪→ N : Ref T

Σ | Γ ⊢ !M ↪→ !N@T : T

Σ | Γ ⊢ M ↪→ N : ⋆

Σ | Γ ⊢ !M ↪→ !(N ⟨⋆⇒ Ref ⋆⟩)@⋆ : ⋆

CI-SWrite

Σ | Γ ⊢ M ↪→ M ′
: Ref T Σ | Γ ⊢ N ↪→ N ′

: T IT
Σ | Γ ⊢ M := N ↪→ M ′

:= N ′
: ()

CI-Write

Σ | Γ ⊢ M ↪→ M ′
: Ref T Σ | Γ ⊢ N ↪→ N ′

: T ′ T ∼ T ′ T , T ′

Σ | Γ ⊢ M := N ↪→ M ′
:= (N ′⟨T ′ ⇒ T ⟩)@T ′

: ()

Σ | Γ ⊢ M ↪→ M ′
: ⋆ Σ | Γ ⊢ N ↪→ N ′

: T

Σ | Γ ⊢ M := N ↪→ (M ′⟨⋆⇒ Ref ⋆⟩) := (N ′⟨T ′ ⇒ ⋆⟩)@⋆ : ()

Fig. 8. Compiling GTLC
+
to the coercion calculus

B DYNAMIC SEMANTICS OF λrefC

Monotonic references were first introduced in terms of an abstract machine mechanized in Is-

abelle/HOL [Siek and Vitousek 2013]. Later, Siek et al. [2015c] presented a reduction semantics for

monotonic references based on coercions along with the addition of blame tracking. However, The

latter had a few minor problems that λrefC fix.

• The grammar for casted values
1
does not allow casts on other casted values. However, the

rule CastRef1 in the cast reduction relation reads a casted value from the heap and then

1λrefC uses the term delayed casts instead to avoid confusion with values that have casts on them
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Coercions c,d ::= ι | I ! | I? | c → d | c × d | Ref T | ⊥I, J

Inert coercions c ↑ ::= I ! | c → d
Active coercions c ↓ ::= ι | I? | c × d | Ref T | ⊥I, J

Coercion typing c : T =⇒ T

ι : T =⇒ T I ! : I =⇒ ⋆ I? : ⋆ =⇒ I

I ≁ J

⊥I, J
: I =⇒ J

c : T ′
1
=⇒ T1 d : T2 =⇒ T ′

2

c → d : T1 → T2 =⇒ T ′
1
→ T ′

2

c : T1 =⇒ T ′
1

d : T2 =⇒ T ′
2

c × d : T1 ×T2 =⇒ T ′
1
×T ′

2
Ref T ′

: Ref T =⇒ Ref T ′

Coercion creation (T ⇒ T ) = c

(T ⇒ T ) = ι

(I ⇒ ⋆) = I ! (⋆⇒ I ) = I?

(I ⇒ J ) = ⊥I, J
if I ⌣̸ J

(T1 → T2 ⇒ T ′
1
→ T ′

2
) = (T ′

1
⇒ T1) → (T2 ⇒ T ′

2
)

(T1 ×T2 ⇒ T ′
1
×T ′

2
) = (T1 ⇒ T ′

1
) × (T2 ⇒ T ′

2
)

(Ref T ⇒ Ref T ′) = Ref T ′

Fig. 9. Simple coercions and their operations

wraps it in another cast expression that is written to the heap. λrefC fixes this issue by changing

the grammar of delayed casts to allow casts on delayed casts (Figure 10).

• A casted value could reduce to an expression that has an inner error using a congruence rule.

Such expression is not a casted value and can not be written to the heap. The state reduction

relation has a rule to handle reduction to an error expression but does not have one to handle

reduction to expressions that have an inner error. λrefC fixes this issue by updating the Error

rule to make sure the result delayed cast could be decomposed into a context and an error

expression.

• The type preservation lemma, the second item in Lemma 2, relates the old heap typing and

the new heap typing with the precision relation on heap typing (Definition 1). However, this

does not account for the fact that the heap could grow by creating new references. λrefC fixes

this issue by recognizing that the heap typing could move along two orthogonal dimensions,

it could become either more precise (Definition C.1) or larger (Definition C.2). The type

preservation lemma is updated accordingly (Lemma C.18).

The variant of the semantics of λrefC
2
and associated type safety proof is fully mechanized in Agda

proof assistant. Figure 9 presents simple coercions and their operations. Inert coercions, denoted

c ↑, form values without checking at the time of the cast. Injection and function coercions are inert

coercions. On the other hand, all other coercions do not form values and are called active coercions,

denoted c ↓.
Figure 10 presents the definition of values, delayed casts, heaps, evolving heaps, and frames.

Figures 11 and 12 presents the reduction rules for the cast calculus with simple coercions. The

symbol ; indicates a reduction relation that does not relate heaps. The symbol # indicates a

reference reduction relation.

C TYPE SAFETY FOR λrefC

We prove type safety for the corrected version of λrefC (defined in Appendix B).

2
The difference is state reduction relation has more verbose rules in the mechanized version
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Run-Time Structures

Values v ::= k | λ(x : T ). e | ⟨v,v⟩ | a | v ⟨c ↑⟩
Delayed Casts dc ::= v | dc ⟨c⟩ | ⟨dc,dc⟩
Heap µ ::= ∅ | µ(a 7→ v : T )
Evolving Heap ν ::= µ | ν (a 7→ dc : T )
Frames F ::= 2 e | v 2 | ⟨2, e⟩ | ⟨v,2⟩ | fst 2 | snd 2 | 2⟨c⟩ |

ref 2@T | !2@T | !2 | 2 := e@T | v := 2@T
Evaluation Contexts E ::= ∅ | F, E

Fig. 10. Run-Time structures for the simple coercion calculus

Pure coercion reduction rules e −→;
c e

v ⟨ι⟩ −→
;
c v

v ⟨I !⟩⟨J?⟩ −→
;
c v ⟨I ⇒ J ⟩

v ⟨⊥I, J ⟩ −→
;
c error

⟨v1,v2⟩⟨c × d⟩ −→
;
c ⟨v1⟨c⟩,v2⟨d⟩⟩

Cast reduction rules e,ν −→c e,ν

PureCast

M −→
;
c N

M,ν −→c N ,ν

CastRef1

ν (a) = dc : T1 T1 ∼ T2 T1 ⊓T2 , T1

a⟨Ref T2⟩,ν −→c a,ν (a 7→ dc ⟨T1 ⇒ (T1 ⊓T2)⟩ : T1 ⊓T2)

CastRef2

ν (a)rtti ∼ T ν (a)rtti ⊓T = ν (a)rtti

a⟨Ref T ⟩,ν −→c a,ν
CastRef3

ν (a)rtti ≁ T

a⟨Ref T ⟩,ν −→c error,ν

Congc
M,ν −→c N ,ν

′

F[M],ν −→c F[N ],ν ′
CongErrc

E[error],ν −→c error,ν

Fig. 11. Dynamic semantics for casts in the simple coercion calculus

We first recognize that the heap typing can move along two orthogonal dimensions, it could

become either more precise (Definition C.1) or its domain can grow (Definition C.2)
3
. Combining

both relations results in one, ⊑p/e , that fully captures how the heap typing changes after each step,

called Heap Typing Progress (Definition C.3).

Definition C.1 (Precision relation on heap typings). Σ′ ⊑p Σ iff dom(Σ′) = dom(Σ) and Σ(a) = T
implies Σ′(a) = T ′

where T ′ ⊑ T .

Definition C.2 (Extension relation on heap typings). Σ ⊑e Σ′
iff dom(Σ) ⊆ dom(Σ′) and Σ(a) =

Σ′(a).

Definition C.3 (Progress relation for heap typings). Σ′ ⊑p/e Σ if Σ′ ⊑p Σ or Σ ⊑e Σ′
.

Lemma C.4 asserts that expression typing is preserved when moving to a more precise heap

typing. Similarly, Lemma C.5 asserts that expression typing is also preserved when moving to

a larger heap typing. Corollary C.6 combines both lemmas and asserts that expression typing is

preserved when the heap typing changes with respect to the ⊑p/e relation.

3
We ignore garbage collection and assume heaps can not become smaller
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Pure reduction rules e −→;
e e

fst ⟨v1,v2⟩ −→
;
e v1

snd ⟨v1,v2⟩ −→
;
e v2

(λ(x : T ).M) v −→
;
e [x := v]M

(v1⟨c → d⟩)v2 −→
;
e (v1 (v2⟨c⟩))⟨d⟩

Reference operations reduction rules e, µ −→
#
e e,ν

ref v@T , µ −→
#
e a, µ(a 7→ v : T ) if a < dom(µ) (NSEAlloc)

!a, µ −→
#
e µ(a)

val
, µ (Read)

!a@T , µ −→
#
e µ(a)

val
⟨µ(a)rtti ⇒ T ⟩, µ (DynRead)

a := v, µ −→
#
e Unit, µ(a 7→ v : µ(a)rtti) (Update)

a := v@T , µ −→
#
e Unit, µ(a 7→ v ⟨T ⇒ µ(a)rtti⟩ : µ(a)rtti) (DynUpdate)

State reduction rules e,ν −→ e,ν

Pure

M −→
;
e N

M, µ −→ N , µ
Mono

M, µ −→
#
e N ,ν

M, µ −→ N ,ν

Cong

M,ν −→ N ,ν ′

F[M], µ −→ F[N ],ν
CongErr

E[error], µ −→ error,ν

Cast

e, µ −→c e
′,ν

e, µ −→ e ′,ν
Error

ν (a) = dc : T dc,ν −→c E[error],ν ′

e,ν −→ error,ν ′

NoRTTIChange

ν (a) = dc : T dc,ν −→c dc
′,ν ′

ν ′(a)rtti = T

e,ν −→ e,ν ′(a 7→ dc ′ : T )

RTTIChanged

ν (a) = dc : T dc,ν −→c dc
′,ν ′

ν ′(a)rtti , T

e,ν −→ e,ν ′

Fig. 12. Dynamic semantics for the simple coercion calculus

Lemma C.4 (Strengthening wrt. the heap typing precision). If Σ | Γ ⊢ e : T and Σ′ ⊑p Σ,
then Σ′ | Γ ⊢ e : T .

Proof. For the case of addresses: From Σ′ ⊑p Σ and the WT-addr rule and transitivity of ⊑, we

have Σ′(a) ⊑ T . Therefore Σ′ | Γ ⊢ a : T . □

Lemma C.5 (Weakening wrt. the heap typing extension). If Σ | Γ ⊢ e : T and Σ ⊑e Σ′, then
Σ′ | Γ ⊢ e : T .

Proof. For the case of addresses: we have Σ′(a) ⊑ T from Σ ⊑e Σ and the WT-addr rule.

Therefore Σ′ | Γ ⊢ a : T . □

Corollary C.6 (Weakening wrt. the heap typing progress). If Σ | Γ ⊢ e : T and Σ′ ⊑p/e Σ,
then Σ′ | Γ ⊢ e : T .

Proof. By applying Lemmas C.4 and C.5 in the cases of ⊑p and ⊑e respectively. □
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Heaps are well-typed when the delayed casts inside respect heap typing.

Definition C.7 (Well-typed heaps). A heap ν is well-typed with respect to heap typing Σ, written
Σ ⊢ ν , iff ∀a,T . Σ(a) = T implies ∃ dc s .t . Σ | ∅ ⊢ dc : T and ν (a) = dc : T .

From Lemma C.4, we have the following corollary.

Corollary C.8 (Heap cast). If Σ ⊢ ν and ν (a) = dc : T and T ′ ⊑ T , then a can be cast to Ref T ′

such that Σ(a 7→ T ′) ⊢ ν (a 7→ (dc ⟨T ⇒ T ′⟩) : T ′).

Proof. Let Σ′ = Σ(a 7→ T ′) and dc ′ = dc ⟨T ⇒ T ′⟩. From T ′ ⊑ T and Σ ⊢ ν we have T ′ ⊑ Σ(a)
which implies Σ′ ⊑p Σ. Next, Lemma C.4 is applied to all delayed casts in the heap and to dc ′, so
we get Σ′ | ∅ ⊢ dc ′ : T ′

, thus Σ′ ⊢ ν (a 7→ dc ′ : T ′). □

Similarly, from Lemma C.5, we have the following corollary.

Corollary C.9 (Heap extension). If Σ ⊢ µ and Σ | ∅ ⊢ v : T and a < dom(Σ), then v can be
added at a such that Σ(a 7→ T ) ⊢ µ(a 7→ v : T ).

Proof. Let Σ′ = Σ(a 7→ T ). We have Σ ⊑e Σ′
from a < dom(Σ). Next, Lemma C.5 is applied

to all values in the heap and to v to get Σ′ | ∅ ⊢ v : T . We add v to the heap at address a, thus
Σ′ ⊢ µ(a 7→ v : T ). □

Lemma C.10 shows that coercions are either inert or active.

Lemma C.10 (Inert and active coercions). ∀c : T =⇒ T ′, c ↑ or c ↓

Active coercions do not create values, so it better be the case that they can take a step. Lemma C.11

asserts this fact:

Lemma C.11 (Active cast progress). If Σ ⊢ ν and Σ | ∅ ⊢ v : T and c : T =⇒ T ′ and c ↓, then
∃ e ,ν ′ s .t . v ⟨c⟩,ν −→c e,ν

′

Proof. By case analysis on c ↓. In the case of monotonic reference coercion, v must be some

address a, and v ⟨Ref T ′⟩ takes a step via −→c . In particular:

CastRef1 if T ′ ∼ ν (a)rtti and T
′ ⊓ ν (a)rtti , ν (a)rtti.

CastRef2 if T ′ ∼ ν (a)rtti and T
′ ⊓ ν (a)rtti = ν (a)rtti.

CastRef3 if T ′ ≁ ν (a)rtti.

□

The following lemma proves that a delayed cast can take step if it is not a value.

Lemma C.12 (Reducible delayed cast progress). If Σ ⊢ ν and Σ | ∅ ⊢ dc : T and dc is not a
value, then ∃ e ,ν ′ s .t . dc,ν −→c e,ν

′

Proof. By case analysis on dc .

Case v Contradiction by the premise that dc is not a value.
Case dc ′⟨c⟩ By cases on whether dc ′ is a value

Case yes We know that dc is not a value, so it must be the case that c is neither an injection

or a function coercion, so Lemma C.11 is applied.

Case no The induction hypothesis is applied to dc and a step is taken via Congc .

Case ⟨dc1,dc2⟩ It must be the case that either or both projections are not values, so the induction

hypothesis is applied to first projection that is not a value and a step is taken via Congc .

□
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However this is not true for arbitrary cast expressions because inert coercions form values.

Corollary C.13 (Cast progress). If Σ ⊢ ν and Σ | ∅ ⊢ v : T and c : T =⇒ T ′, then either
(1) v ⟨c⟩ is a value, or
(2) ∃ e , ν ′ s .t . v ⟨c⟩,ν −→c e,ν

′

Proof. By Lemma C.10, c is either c ↑ or c ↓. In the case of the former, we conclude that v ⟨c⟩ is
a value. Otherwise, Lemma C.11 is applied. □

If a delayed cast took a reduction step, the result expression should be another delayed cast or an

erroneous expression.

Lemma C.14 (Reducible delayed cast preservation). If Σ ⊢ ν and Σ | ∅ ⊢ dc : T and
Σ′ | ∅ ⊢ e : T and Σ′ ⊢ ν ′ and dc,ν −→c e,ν

′, then either
(1) e is a delayed cast, or
(2) e = E[error]

we prove progress when the heap contains at least one delayed cast that is not a value.

Lemma C.15 (Progress with evolving heap). If Σ ⊢ ν and ν is not a normal heap and Σ | ∅ ⊢

M : T , then ∃ ν ′ s .t . M,ν −→ M,ν ′

Proof. Because ν is not normal, then ∃ a,dc s .t . ν (a)val = dc anddc is not a value. By LemmaC.12,

dc takes a step to an expression e . By Lemma C.14, there are two cases:

Case e = E[error] : A step is taken via Error.

Case e is a delayed cast : By cases on whether ν (a)rtti = ν
′(a)rtti

Case ν (a)rtti = ν
′(a)rtti A step is taken via NoRTTIChange

Case ν (a)rtti , ν
′(a)rtti A step is taken via RTTIChanged

□

Progress in the case of a normal heap is standard.

Lemma C.16 (Progress with normal heap). If Σ ⊢ µ and Σ | ∅ ⊢ M : T , then either
(1) M is a value, or
(2) M = error, or
(3) ∃ N ,ν s .t . M, µ −→ N ,ν

Proof. By Lemma C.13 and standard induction on the typing derivation. □

From Lemmas C.15 and C.16, we assemble the full proof of progress by cases on whether the heap

is in a normal state:

Corollary C.17 (Progress). If Σ ⊢ ν and Σ | ∅ ⊢ M : T , then either
(1) M is a value, or
(2) M = error, or
(3) ∃ N ,ν ′ s .t . M,ν −→ N ,ν ′

Lemma C.18 (Type preservation). If Σ ⊢ ν and Σ | ∅ ⊢ M : T and M,ν −→ N ,ν ′, then
∃ Σ′ s .t . Σ′ | ∅ ⊢ N : T and Σ′ ⊢ ν ′ and Σ′ ⊑p/e Σ

From Corollary C.16 and Lemma C.18, we prove type safety.

Theorem C.19 (Type safety). If Σ ⊢ ν and Σ | ∅ ⊢ e : T , then either
(1) e diverges, or
(2) e = error, or
(3) ∃ v, Σ′,ν ′ s .t . e,ν −→∗ v,ν ′ and Σ′ | ∅ ⊢ v : T and Σ′ ⊢ ν ′
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