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What is a good gradual language? Siek et al. have previously proposed the refined criteria, which specify

certain guarantees about semantic correspondence and preservation of well-typedness and type-safety in the

presence of untyped code. However, because of their exclusive focus on syntactic properties, they are not

the whole story. Rich semantic properties like parametricity or non-interference, which hold in the static

language, should also continue to hold upon gradualisation.

In this paper, we investigate and argue for a new criterion previously hinted at by Devriese et al.: the

embedding from the static to the gradual language should be fully abstract. We illustrate in a simple setting

that the criterion is useful; it can weed out an erroneous gradualisation that satisfies the refined criteria. We

illustrate that it is realistic, by giving a proof sketch for the natural gradualisation of STLC𝜇 .
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1 INTRODUCTION
What do we want from a gradually typed language? To formally answer this question, Siek et

al. have put forward a set of refined criteria [14]. While these do a great job at formally describing

some of the intuitive requirements for a gradual language, they are not the whole story.

Generally, a gradual language should preserve the guarantees offered by the static language,

even when interacting with untyped code. In an unpublished draft, Tanter et al. have argued that

the refined criteria successfully capture this intuition, but only for one type of guarantees: those

concerning type safety [7].
1
In many settings, static type systems offer other types of guarantees.

For example, the parametricity in System F and related languages is a crucial language property,

but can be broken without compromising type safety. Indeed, in a paper on gradual parametricity,

Toro et al. report that a naive evidence-based semantics produces a well-behaved gradual language

satisfying all the refined criteria but not parametricity. They continue to design a gradual language

satisfying parametricity but not the refined criteria. The situation is remarkably similar in the

context of gradual security type systems, where Toro et al. again sacrifice one of the refined criteria

to salvage the static language’s non-interference guarantee [15].

As an aside, we note that both for gradual parametric type systems and for gradual security

type systems, it has been suggested that type-based reasoning principles (parametricity resp. non-

interference) are incompatible with one of the refined criteria. However, this incompatibility is not

currently agreed upon: at least in the setting of gradual parametricity, we are aware of promising

ongoing work by two separate groups to reconcile them.

In this work, we propose and investigate a new formal criterion for the gradualisation of a static

language, previously suggested by Devriese et al. [5]. We propose that the embedding from the

static to the gradual language should be fully abstract [1, 2]. That is, contextual equivalences in the

1
In this text, we use the word type safety to capture syntactic type safety properties, typically embodied by progress and

preservation theorems.
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static language should be preserved in the gradual language. Concretely, if two static terms always

behave the same in the static language (i.e. no static context could ever distinguish the two), then

they should always behave the same when viewed as fully static programs in the gradual language

(i.e. no gradual context can ever distinguish the two).

Intuitively, this is a way of specifying that the gradual part of the language should not introduce

more distinguishing power over static terms and that abstractions and reasoning principles from

the static language should remain valid in the gradual language. Practically, it means, for example,

that refactorings and compiler optimizations which are semantics-preserving in the static language

are also sound in the gradual extension. As a concrete example, in any gradualisation of System F,

we should –at the least– expect that a fully static implementation of ∀𝛼.𝛼 → 𝛼 is always equivalent

to Λ𝛼.𝜆𝑥 : 𝛼.𝑥 , Λ𝛼. 𝜆𝑥 : 𝛼. 𝜔 or Λ𝛼. 𝜔 . Likewise, in a gradualisation of a security-typed language,

we should –at the least– still have that our secret value 6 : N𝐻 inside 𝜆𝑓 : N𝐻 → N𝐿 .𝑓 (6 : N𝐻 )
can never be leaked.

In this paper, it is not our ambition to revisit gradual typing in challenging settings. We also do

not claim that our criterion is the definitive characterisation of a good gradual language. Instead, we

aim to demonstrate that our criterion is (1) interesting and (2) realistic. We demonstrate the former

in §2, by exhibiting a simple gradual security-typed language, which is clearly unsatisfactory but

satisfies all the refined criteria. However, the problem is adequately detected by our criterion.

Next, in §3, we show that full abstraction is realistic, by exhibiting a proof of the property for a

representative example; the GTLC𝜇 . Taking inspiration from similar proofs in the context of secure

compilation [4, 9], we prove that there is a fully abstract embedding of STLC𝜇 into GTLC𝜇 .

We discuss a couple of remarks and future work in §4. We conclude in §5.

2 EXAMPLE IN FAVOUR OF FAE BESIDES REFINED CRITERIA
To explain why the refined criteria alone are not enough, this section presents a simple but

representative example. We start with the STLC𝜇,sec, a simple variant of 𝜆sec [6], in which every

type 𝜏 comes in only two flavours; 𝜏𝐻 and 𝜏𝐿 , corresponding respectively to sensitive data and

non-sensitive data. A value 6 for example, can be typed both as a value of N𝐻 as well as N𝐿 . The

former denotes that 6 must be treated as sensitive data, the latter denotes insensitive data.

The typing rules are defined in such a way that sensitive data can never leak into insensitive data.

That is, any computation that uses a sensitive value is also marked sensitive, e.g., if 𝑏 then 𝑒 else 𝑒 ′

where 𝑏 is sensitive. Consequently, in this system a function of type B𝐻 → B𝐿 is not able to

use its input argument, as doing so would leak sensitive information. In other words, such a

function is necessarily a constant function. This property is generally formalised by the notion of

“non-interference” [6].

Now imagine an incorrect gradualisation of this language, which does not properly respect

security labels of types, for example, by allowing a cast (𝑣 : B𝐻 ⇒ ★ ⇒ B𝐿) → 𝑣 to succeed.

This issue alone will not break the refined criteria for gradual type systems. This is essentially

because these criteria are exclusively concerned with syntactic criteria, such as well-typedness and

type safety, but turn a blind eye to semantic properties such as non-interference, preservation of

contextual refinements, etc.
Let us look at the gradual guarantee, for instance. The first part states that if a closed term, say

𝑒 , is well-typed, removing type annotations will result in a less precise term, say 𝑒 ′, that is still
typed for a less precise type. Trivially, adding this erroneous cast does not invalidate this. Secondly,

it states that if 𝑒 ⇓ 𝑣 then 𝑒 ′ ⇓ 𝑣 ′ with 𝑣 less precise than 𝑣 ′, or if 𝑒 ⇑ then 𝑒 ′ ⇑. In other words,

stripping type-annotations from a program that does not give any run-time errors, should not

change its behaviour. Again, we can add this erroneous cast rule without breaking that statement.
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Similar intuition applies to the third part of the gradual guarantee, which states that adding correct
type annotations to a gradual term does not change its behaviour.

However, embedding the STLC𝜇,sec into such an erroneous gradual language will not be fully

abstract. To understand this, remember that any function of type B𝐻 → B𝐿 must necessarily be

constant. That is, the following contextual equivalence holds:

(𝜆𝑓 : (B𝐻 → B𝐿). 𝑓 true) ≈ (𝜆𝑓 : (B𝐻 → B𝐿). 𝑓 false)

However, the same equivalence will not hold in our erroneous gradual language. A context like the

following can distinguish the two programs:

[] (𝜆𝑥 : B𝐻 . 𝑥 : B𝐻 ⇒ ★⇒ B𝐿)

From a more high-level perspective, what this example shows is that the refined criteria exclu-

sively focus on typability and syntactic type safety, consequently failing to consider more semantic

aspects of type systems. Particularly, it fails to require preservation of language properties like

parametricity or non-interference. Our FAE criterion does at least partially: it requires preservation

of at least contextual equivalences that follow from those properties, such as the example discussed

earlier. For other properties like the validity of refactorings and compiler optimizations, it does so

completely.

3 REPRESENTATIVE EXAMPLE SATISFYING FAE
The previous example shows that our FAE criterion can detect problems in gradual languages that

are missed by the refined criteria. But is the criterion realistic to expect from a gradual language. In

this section, we argue that it is, by proving that the criterion holds for a representative gradual

language: the gradually typed lambda calculus GTLC𝜇 , extended with (iso-)recursive types. This

proof is the more technical part of this work, and we are working to prove the result mechanically

in Coq, using the Iris framework [8].

First, in §3.1, we sketch GTLC𝜇 as the gradual extension of STLC𝜇 , the STLC with sum, product,

and (iso-)recursive types. Next, we formally state the FAE-criterion in §3.2. In §3.3, we present a

proof sketch for FAE in this setting. The proof sketch relies on the notion of a back-translation,

which we lay-out in §3.4.

3.1 Definition GTLC𝜇

We sketch GTLC𝜇 here. Its formal definition follows the pattern of GTLC defined as a ground-type

cast-calculus [13, 14]. The presentation here is not entirely self-contained, and so we advise the

unfamiliar reader to first get acquainted with the presentation in [14].

We have the following types.

𝜏 ::= 𝐵 | 𝜏 → 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝑋 | 𝜇𝑋 .𝜏 | ★

Here, 𝐵 denotes a base type, so we have, for instance 𝐵 ::= 1 | N | B.
We then define the following consistency relation on types.

𝐴 ⊢ ★ ∼ 𝜏 𝐴 ⊢ 𝜏 ∼ ★ 𝐴 ⊢ 𝐵 ∼ 𝐵
𝐴 ⊢ 𝜏𝑎 ∼ 𝜏 ′𝑎 𝐴 ⊢ 𝜏𝑟 ∼ 𝜏 ′𝑟

𝐴 ⊢ 𝜏𝑎 → 𝜏𝑟 ∼ 𝜏 ′𝑎 → 𝜏 ′𝑟

𝐴 ⊢ 𝜏1 ∼ 𝜏 ′
1

𝐴 ⊢ 𝜏2 ∼ 𝜏 ′
2

𝐴 ⊢ 𝜏1 + 𝜏2 ∼ 𝜏 ′
1
+ 𝜏 ′

2

𝐴 ⊢ 𝜏1 ∼ 𝜏 ′
1

𝐴 ⊢ 𝜏2 ∼ 𝜏 ′
2

𝐴 ⊢ 𝜏1 × 𝜏2 ∼ 𝜏 ′
1
× 𝜏 ′

2

𝐴,𝑋 ∼ 𝑌 ⊢ 𝜏 ∼ 𝜏 ′

𝐴 ⊢ 𝜇𝑋 .𝜏 ∼ 𝜇𝑌 .𝜏 ′
𝑋 ∼ 𝑌 ∈ 𝐴

𝐴 ⊢ 𝑋 ∼ 𝑌

3
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It is mostly standard, except for the fact that we keep track of a list of assumptions in order to

deal with the consistency between recursive types. So two closed types 𝜏 and 𝜏 ′ are consistent,
written 𝜏 ∼ 𝜏 ′, if they are consistent in the empty list of assumptions, i.e. [] ⊢ 𝜏 ∼ 𝜏 ′.

Following the scheme in [13, 14], we have the following ground types.

𝐺 ::= 𝐵 | ★→ ★ | ★ +★ | ★×★ | 𝜇𝑋 .★

We have the usual factorisation of casts through their ground-types.

Below, we have the dynamics for the cast rule between sum types [13]. Casting a value between

𝜏1 + 𝜏2 and 𝜏 ′1 + 𝜏 ′2, will boil down to either a cast from 𝜏1 to 𝜏
′
1
, or from 𝜏2 to 𝜏

′
2
.

𝑣 : 𝜏1 + 𝜏2 ⇒ 𝜏 ′
1
+ 𝜏 ′

2
→ case 𝑣 of 𝜆𝑥1 : 𝜏1. inl (𝑥1 : 𝜏1 ⇒ 𝜏 ′

1
)

| 𝜆𝑥2 : 𝜏2. inr (𝑥2 : 𝜏2 ⇒ 𝜏 ′
2
)

Below, we have the dynamics for the cast rule between product types [13]. Casting a value from

𝜏1 × 𝜏2 to 𝜏
′
1
× 𝜏 ′

2
, will boil down to a cast from 𝜏1 to 𝜏

′
1
for the first projection, and from 𝜏2 to 𝜏

′
2
for

the second projection.

𝑣 : 𝜏1 × 𝜏2 ⇒ 𝜏 ′
1
× 𝜏 ′

2
→ (𝜋1 𝑣 : 𝜏1 ⇒ 𝜏 ′

1
, 𝜋2 𝑣 : 𝜏2 ⇒ 𝜏 ′

2
)

For casting a value from one recursive type to another, we first unfold it and perform the cast

between the two types unfolded, after which we fold the result.

𝑣 : 𝜇𝑋 .𝜏 ⇒ 𝜇𝑋 .𝜏 ′ → fold (unfold 𝑣 : 𝜏 [𝑋 ↦→ 𝜇𝑋 .𝜏] ⇒ 𝜏 ′[𝑋 ↦→ 𝜇𝑋 .𝜏 ′])

3.2 Formal statement and high-level overview of proof
We state the FAE-criterion formally here.

Theorem 3.1 (Fully abstract embedding). The embedding from STLC𝜇 to GTLC𝜇 is fully
abstract. That is, for all static terms 𝑒1, 𝑒2 we have that 𝑒1 ≈𝑆 𝑒2 iff ⌈𝑒1⌉ ≈𝐺 ⌈𝑒2⌉.

Here, ⌈_⌉ denotes the natural embedding from STLC𝜇 into GTLC𝜇 . The equivalence in STLC𝜇/GTLC𝜇

is denoted by ≈𝑆 /≈𝐺 . In both static and gradual language, we use the standard notion of contextual

equivalence as equi-termination under an arbitrary context.

We give a proof that is similar to proofs given in the context of secure compilation, where fully

abstract compilation is often used to characterise security of a compiler [4, 9, 10].

3.3 Proof sketch
Theorem 3.1 can be split up into the two directions.

The if-part is often denoted as reflection of equivalence. In this context, the proof is relatively

easy as every static context can be seen as a gradual one, and the operational semantics of the two

languages correspond adequately. For brevity, we do not go into this part of the proof.

The only-if-part – the preservation of equivalences – is more interesting. Given 𝑒1 and 𝑒2 such

that Γ ⊢ 𝑒1 ≈𝑆 𝑒2 : 𝜏 , we have to prove ⌈𝑒1⌉ ≈𝐺 ⌈𝑒2⌉. In general, a gradual context can seem to

have more distinguishing power than a mere static one; it is our job to prove that it is not the case.

So given an arbitrary gradual context, say 𝐶𝐺 , we have to prove that 𝐶𝐺 [⌈𝑒1⌉] ⇓ iff 𝐶𝐺 [⌈𝑒2⌉] ⇓.
The proof of the if part and the only-if part are similar, here we assume 𝐶𝐺 [⌈𝑒1⌉] ⇓ and prove

𝐶𝐺 [⌈𝑒2⌉] ⇓. To do this, we will define a so-called “back-translation”. This is a function that maps a

gradual context to a static one that emulates its behaviour, hence proving that it indeed does not

provide any more distinguishing power. Putting it formally, we want our back-translation to satisfy

the following specification.
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Theorem 3.2 (Spec. back-translation). Given arbitrary well-typed static term, Γ ⊢𝑆 𝑒𝑆 : 𝜏 , and
arbitrary target context, say 𝐶𝐺 : (Γ; 𝜏) → ([]; 1), we must have that ⟨⟨𝐶𝐺 ⟩⟩[𝑒𝑆 ] ⇓ iff 𝐶𝐺 [⌈𝑒𝑆⌉] ⇓.

Given such a back-translation, we have that 𝐶𝐺 [⌈𝑒1⌉] ⇓ implies ⟨⟨𝐶𝐺 ⟩⟩[𝑒1] ⇓. Because ⟨⟨𝐶𝐺 ⟩⟩ is a
source context, we know – given 𝑒1 ≈𝑆 𝑒2 – that ⟨⟨𝐶𝐺 ⟩⟩[𝑒2] ⇓. Using our specification one more

time, we conclude 𝐶𝐺 [⌈𝑒2⌉] ⇓.

3.4 Back-translation
Of course, the difficult part is finding a back-translation that satisfies the specification in theorem 3.1.

We start by defining the back-translation, denoted by ⟨⟨_⟩⟩, on types. A term of type 𝜏 will be

back-translated to a term of type ⟨⟨𝜏⟩⟩.
⟨⟨𝐵⟩⟩ = 𝐵 ⟨⟨𝜏1 × 𝜏2⟩⟩ = ⟨⟨𝜏1⟩⟩ × ⟨⟨𝜏2⟩⟩ ⟨⟨𝜏1 + 𝜏2⟩⟩ = ⟨⟨𝜏1⟩⟩ + ⟨⟨𝜏2⟩⟩

⟨⟨𝜏1 → 𝜏2⟩⟩ = ⟨⟨𝜏1⟩⟩ → ⟨⟨𝜏2⟩⟩ ⟨⟨𝑋 ⟩⟩ = 𝑋 ⟨⟨𝜇𝑋 .𝜏⟩⟩ = 𝜇𝑋 .⟨⟨𝜏⟩⟩ ⟨⟨★⟩⟩ = U

The definition is mostly trivially recursive; we maintain as much information as possible when

we back-translate a gradual term.

In the case of ★, we back-translate to a universal type in STLC𝜇 as inspired by [4, 9].

U := 𝜇𝛼.(𝐵 + (𝛼 → 𝛼) + (𝛼 + 𝛼) + (𝛼 × 𝛼) + 𝛼)
The last case in the disjoint sum is the case for a folded value of a recursive type.

The back-translation is most easily defined on terms of the cast-calculus itself. Most of it is

simply recursive. The only interesting case is the one for casting.

⟨⟨𝑒 : 𝜏 ⇒ 𝜏 ′⟩⟩ = F Σ
𝜏⇒𝜏 ′ ⟨⟨𝑒⟩⟩

That is, for all types 𝜏 , 𝜏 ′, we define a cast from 𝜏 to 𝜏 ′ as a –to be defined– simply-typed function

F Σ
𝜏⇒𝜏′ of type ⟨⟨𝜏⟩⟩ → ⟨⟨𝜏 ′⟩⟩.
We first go over functions of the form F Σ

𝐺⇒★
:

F Σ
𝐵⇒★ : 𝐵 → U

F Σ
★×★⇒★ : (U × U ) → U

F Σ
★+★⇒★ : (U + U ) → U

F Σ
★→★⇒★ : (U → U ) → U

F Σ
𝜇𝑋 .★⇒★ : 𝜇𝑋 .U → U

These have the effect of injecting terms into our universal type; they are all implemented by a

tedious yet straightforward use of inl ’s, inr ’s, and folds.
We now define the functions of the form F Σ

★⇒𝐺
:

F Σ
★⇒𝐵 : U → 𝐵

F Σ
★⇒★×★ : U → (U × U )

F Σ
★⇒★+★ : U → (U + U )

F Σ
★⇒★→★ : U → (U → U )

F Σ
★⇒𝜇𝑋 .★ : U → U

These are implemented by unfolding the input argument, after which a series of case matches

are introduced to determine whether the input argument is of the right form. If it is, we just return

it in the unfolded form. If it is not, we just diverge.
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As a sanity check, we can indeed convince ourselves of the following contextual equivalences.

(𝜆𝑥 : ⟨⟨𝐺⟩⟩. 𝑥) ≈𝑆 (𝜆𝑥 : ⟨⟨𝐺⟩⟩. F Σ
★⇒𝐺 (F Σ

𝐺⇒★ 𝑥))

(𝜆𝑥 : ⟨⟨𝐺1⟩⟩. Ω ⟨⟨𝐺2 ⟩⟩) ≈𝑆 (𝜆𝑥 : ⟨⟨𝐺1⟩⟩. F Σ
★⇒𝐺2

(F Σ
𝐺1⇒★ 𝑥)) where 𝐺1 ≠ 𝐺2

To implement F Σ
𝜏⇒★ and F Σ

★⇒𝜏 where 𝜏 ≠ ★ and where 𝜏 is not equal to a ground type, we

straightforwardly emulate the factorisation through its unique ground type, say 𝐺 , as follows.

F Σ
𝜏⇒★ = 𝜆𝑥 : ⟨⟨𝜏⟩⟩. F Σ

𝐺⇒★ (F Σ
𝜏⇒𝐺 𝑥)

F Σ
★⇒𝜏 = 𝜆𝑥 : U . F Σ

𝐺⇒𝜏 (F Σ
★⇒𝐺 𝑥)

It remains only to define the emulation functions for casting between sum types, product types,

function and recursive types. Between sum types, we have the following.

F Σ
𝜏1+𝜏2⇒𝜏′

1
+𝜏′

2

= 𝜆𝑠 : ⟨⟨𝜏1⟩⟩ + ⟨⟨𝜏2⟩⟩. case 𝑠 of 𝜆𝑥1 : ⟨⟨𝜏1⟩⟩. inl (F Σ
𝜏1⇒𝜏′

1

𝑥1)

𝜆𝑥2 : ⟨⟨𝜏2⟩⟩. inr (F Σ
𝜏2⇒𝜏′

2

𝑥2)

Between products, we have the following.

F Σ
𝜏1×𝜏2⇒𝜏′

1
×𝜏′

2

= 𝜆𝑝 : ⟨⟨𝜏1⟩⟩ × ⟨⟨𝜏2⟩⟩. (F Σ
𝜏1⇒𝜏′

1

(𝜋1 𝑝), F Σ
𝜏2⇒𝜏′

2

(𝜋2 𝑝))

For function types, we have the following.

F Σ
𝜏𝑎→𝜏𝑟⇒𝜏 ′𝑎→𝜏′𝑟

= 𝜆𝑓 : ⟨⟨𝜏𝑎 → 𝜏𝑟 ⟩⟩. 𝜆𝑎 : ⟨⟨𝜏 ′𝑎⟩⟩. F Σ
𝜏𝑟⇒𝜏 ′𝑟

(𝑓 (F Σ
𝜏′𝑎⇒𝜏𝑎

𝑎))

The superscript is used to keep track of recursive calls, and it is used for casting between recursive

types.

F Σ
𝜇𝑋 .𝜏⇒𝜇𝑋 ′.𝜏′ = (rec (𝑓 : 𝜇𝑋 .⟨⟨𝜏⟩⟩ → 𝜇𝑋 ′.⟨⟨𝜏 ′⟩⟩) 𝑟 = fold (F Σ,𝑋 :𝑓

𝜏⇒𝜏′ (unfold 𝑟 )))

F
Σ, 𝑋 :𝑓 , Σ′

𝑋⇒𝑋 ′ = 𝑓

Showing that this back-translation satisfies theorem 3.2 demands a proof, to be carried out

with step-indexed logical relations, in a style similar to [4, 9]. We hope to significantly ease this

proof-burden by using the state-of-the-art program logic Iris [8].

4 DISCUSSIONS
Contextual equivalence in GTLC𝜇 . We state the full abstraction of the embedding from STLC𝜇 to

GTLC𝜇 wrt the standard notion of contextual equivalence by equi-terminations in both STLC𝜇 and

GTLC𝜇 . Below, we have it in full for GTLC𝜇 .

Definition 4.1 (Contextual equivalence in Gradual Language). Two terms 𝑒1, 𝑒2 in GTLC𝜇 are

equivalent, written 𝑒1 ≈𝐺 𝑒2, iff Γ ⊢ 𝑒1, 𝑒2 : 𝜏 and for all gradual contexts 𝐶𝐺 : (Γ;𝜏) → ([];1), we
have 𝐶𝑔 [𝑒1] ⇓ iff 𝐶𝑔 [𝑒2] ⇓.

Note that this notion entails that if Γ ⊢ 𝑒 ≈𝐺 𝑒 ′ : 𝜏 for some 𝑒 and 𝑒 ′, there can be a gradual

context, say 𝐶𝐺 : (Γ;𝜏) → ([]; 1), for which 𝐶𝐺 [𝑒] diverges and 𝐶𝐺 [𝑒 ′] gives a runtime error.

Equating divergence with runtime errors allows us to simplify the formalities (otherwise, we

would need to add runtime errors in STLC𝜇 ). We also believe it can often be justified, at least in

settings where runtime type errors cannot be caught, as for many purposes, the difference between

divergence and uncatchable runtime errors is not practically important.

6
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Why consider STLC𝜇 and not STLC without recursion? Well, the embedding of STLC into the

archetypal GTLC is not fully abstract. As every function in STLC is terminating, we have that, e.g.,
𝜆𝑓 : B → B. 43 and 𝜆𝑓 : B → B. 𝜋2 (𝑓 𝑡𝑟𝑢𝑒, 43) are contextually equivalent in the static language.

Considering their embeddings as part of the gradual language though, they are not any more. As

GTLC embeds the untyped lambda calculus, it allows general recursion, and so we can construct a

gradual context [] (𝜆𝑏 : B. Ω) that will be able to distinguish the two.

Is the lack of FAE for the archetypal gradualisation of STLC an argument against our criterion?

We think not. It simply shows that GTLC should not be considered as the gradualisation of STLC

as it does not uphold the termination guarantees which are part of the meaning of STLC types.

Whether such an enforcement is possible and how it would work is, of course, a separate question.

Instead, GTLC should be considered the gradualisation of a non-terminating variant of STLC. Tanter

et al. [7] also discuss this and note that type soundness is broken with respect to total correctness.

This compromise can also be formalised by noting that instead of “full” full abstraction of the

embedding, the embedding still satisfies full abstraction with respect to a weaker termination-

insensitive contextual equivalence in the gradual language.

Why add recursive types instead of just plain recursion using a fix operator? “Why bother with

recursive types,” the reader may wonder, “if adding recursion to STLC with just a fix operator

will do the trick”. Admittedly, we believe that the natural gradualisation of STLCfix satisfies the

FAE-criterion.

Nevertheless, FAE seems much easier to prove for the gradualisation of STLC𝜇 as it allows for a

true universal type [9, 10]. Futhermore, given proofs of full abstraction for the following,

(a) the embedding from STLC𝜇,fix into its gradualisation

(b) the embedding from STLCfix into STLC𝜇
2

a proof of the FAE-criterion for the gradualisation of STLCfix is easily obtained.

Indeed, full abstraction is preserved upon composition, and thus we would know that the

embedding from STLCfix into GTLC𝜇,fix is fully abstract. Moreover, as the operational semantics

of GTLCfix is trivially contained in GTLC𝜇,fix, every context in GTLCfix can be seen as a context

in GTLC𝜇,fix; we could then conclude that the embedding from STLCfix into GTLCfix preserves

contextual equivalences as well.
3

Decomposing the proof as traced out above, we delegate the distracting technicalities (b), allowing

us to focus on the crux of the matter (a).
4

Future work. Do current state-of-the-art gradual languages or even gradualisation mechanisms

satisfy the FAE criterion? In contrast to the obviously naive example in 3, we might begin to look

at a serious gradualisation of an information-flow language as presented in [6]. To what extent

does the FAE criterion further weed out erroneous gradualisations? That is, to what extent do we

have unsatisfactory gradualisations that still satisfy the refined criteria but not the FAE-criterion?

Investigating these questions for gradual languages proposed in the literature, is an interesting

exercise that we leave for future work.

The FAE is essentially a secure compilation property in which the compiler is merely the trivial

embedding. It would be interesting to see if other concepts from secure compilation have interesting

interpretations when considering the trivial embedding as compiler. Of special interest here could

2
Using the idea of a family of approximate back-translations[4], a proof of this seems very feasible; the possibility is explicitly

mentioned in [10] and we know that the authors of that paper are currently working on it.

3
Of course, reflection of contextual equivalences follows from the refined criteria[14].

4
We strip the latter a bit more by considering the gradualisation of STLC𝜇 .
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be the robust safety properties [12] and other variants of full abstraction [3, 11]. Moreover, we

intend to investigate whether some of the refined criteria might be implied by such a variant.

5 CONCLUSION
As argued in the introduction, it is not a controversial statement to say that the refined criteria can

be further refined. We have argued for the criterion of full abstraction as previously suggested by [5].

We have shown that it is satisfied by the natural gradualisation of STLC𝜇 , and that it can indeed

weed out undesirable gradual languages. We expect that our new criterion excludes languages such

as those mentioned in the introduction (violating parametricity and non-interference), but we have

not investigated this thoroughly yet.

In summary, we propose the FAE-criterion as a sensible requirement that a gradual language
may satisfy, worthy of further investigation.
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