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The designers of static analyses used in industry often try to reduce the number of false positives reported

by the analysis through increased engineering e�ort, user-provided annotations, and/or weaker soundness

guarantees. To produce a static analysis with little engineering e�ort, reduced false positives, and strong

soundness guarantees in a principled way, we adapt the “Abstracting Gradual Typing” framework to the

abstract-interpretation based program analysis setting. As a case study, we take a simple static data�ow

analysis that relies on user-provided annotations and has nullability lattice N @ > (where N means “de�nitely

not null” and > means “possibly null”) and extend it by adding ? as a third abstract value. The question mark

explicitly represents “optimistic uncertainty” in the analysis itself, supporting a formal soundness property

and the “gradual guarantees” laid out in the gradual typing literature. To evaluate our gradual null-pointer

analysis, we implement it as a Facebook Infer checker and compare it against the existing null checkers in

Facebook Infer. A preliminary set of experiments show evidence of reduced false positives. We then generalize

this example into a system that gradualizes any data�ow analysis in the same way: augmenting the lattice

while retaining the properties that permit it to be used in the standard data�ow analysis �xpoint algorithm.
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1 INTRODUCTION
A signi�cant proportion of software defects can be eliminated by a relatively specialized set of

analyses. For instance, 53.8–57.1% of crash-causing defects in Mozilla and Apache Web Server as

of 2006 were found to be memory bugs, and 37.2–41.7% of those were speci�cally NULL pointer

dereferences [Li et al. 2006]. Static analysis could be used to �nd these defects, but sound tools—that

is, those without false negatives—do not scale well, and burden developers with too many false

positives [Emanuelsson and Nilsson 2008], which cause inconsistent use of static analysis tools in

industry [Johnson et al. 2013]. To avoid these issues, state-of-the-art null-pointer analysis tools

make use of modularity, user-provided annotations, and strategic unsoundness [Banerjee et al.

2019]. However, this unsoundness is generally unformalized, which makes it di�cult to extend

to analyses for other defects besides NULL pointer dereferences. In response, this work lays the

groundwork for a general framework of gradual static analyses using concepts from the gradual

typing literature.
1
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Recent work by Bader et al. [2018] draws on research in gradual typing [Garcia et al. 2016;

Siek and Taha 2007, 2006] to produce a sound and more user-friendly approach to formal veri�-

cation called gradual veri�cation. Gradual veri�cation extends a static veri�cation system with

support for imprecise speci�cations – a partial speci�cation joined with ? representing unspeci�ed

information, similarly to gradual re�nement types [Lehmann and Tanter 2017] – using Garcia

et al. [2016]’s Abstracting Gradual Typing framework. The resulting veri�cation system warns

only about inconsistencies between speci�cations and code; it does not produce warnings due to

missing information in speci�cations. Instead, missing information is dynamically veri�ed. Gradual

veri�cation adheres to gradual guarantees (inspired by corresponding gradual typing properties

formulated by Siek et al. [2015]) that ensure developers can choose their desired level of precision

without arti�cial constraints imposed by the veri�cation technology.

This paper explores a novel territory for gradual program reasoning: the gradual program

analysis setting produces sound analyses that reduce false positives through user- or tool-provided

annotations and runtime checks in a principled way. We present a case study that consists of

gradualizing a simple null-pointer analysis based on abstract interpretation [Cousot and Cousot

1977]. Its lattice is extended to support two conceptions of uncertainty at once. The original lattice

already permits pessimistic uncertainty, in which the analysis assumes the worst and issues a static

warning whenever it determines that the program may go wrong. Our larger set also permits

optimistic uncertainty, in which the analysis issues no static warning but instead inserts a runtime

check to prevent the program from going wrong. The choice between pessimistic and optimistic

uncertainty is determined by user-provided annotations.

Introducing optimistic uncertainty must necessarily reduce false positives, which is our primary

goal as mentioned above. Our experiments using a custom Facebook Infer checker on Java code

show that we reduce false positives not just in comparison to sound static analyses, but also

in comparison to unsound analyses used in industry. The other bene�t of our approach is that

the programmer can choose where to use optimistic uncertainty and where to use pessimistic

uncertainty by placing annotations in their code, so they can choose to get analysis results where

it would be useful, and avoid most false positives everywhere else.

The rest of this paper is structured as follows. First, in section 2, describe our gradual program

analysis framework outside the context of any speci�c analysis, along with some of the formal

properties that it satis�es. Then in section 3, we take a simple, standard null-pointer analysis on a

Java-like language, and gradualize it using our framework. Finally, in section 4, we present some

preliminary empirical �ndings related to the gradual null-pointer analysis, before listing related

work in section 5 and concluding with a discussion of future work in section 6.

2 GENERAL FRAMEWORK AND PROPERTIES
2.1 Static Analysis
We start with a set Var of possible variables. We then assume that we have a programming language,

which consists of (among other things) a family InstAnn of instruction sets, parametrized by a

nonempty set Ann of annotations. Annotations do not a�ect the behavior of the program, but will

be used by the static (and later, gradual) analysis. A program in this language is a directed graph on

the set of vertices Vert, with a mapping inst : Vert → InstAnn. This graph is the control-�ow

graph of the program, so essentially, an edge fromu ∈ Vert tov ∈ Vert means that, if the program

is currently at u, execution could proceed to vertex v after u is executed. If a vertex has multiple

outgoing edges, it is a branch point; the edge that is actually taken when the program executes

would depend on the program state and the concrete semantics of the language.

We also assume that we have a static analysis for this language, which has three parts:
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for Instruction i in program

input[i] = output[i] = >

output[programStart] = initialDataflowInformation

worklist = { firstInstruction }

while worklist is not empty

take an instruction i off the worklist

input[i] = tk ∈preds(i) output[k]

newOutput = F(i, input[i])

if newOutput , output[i]

output[i] = newOutput

for Instruction j in succs(i)

add j to worklist

Fig. 1. Kildall’s worklist algorithm for the null-pointer analysis.

• A semilattice Abst of abstract values with partial order v and join function t

• A family of �ow functions flowAnn : InstAnn × StateAnn → StateAnn (where StateAnn =

Var ⇀ Ann), parametrized by the set of annotations Ann, where it can be assumed that

Ann ⊇ Abst

• A family of safety functions safeAnn : Var×InstAnn → Abst, where again it can be assumed

that Ann ⊇ Abst

From these three analysis parts, we take an individual program with Ann = Abst and use Kildall’s

worklist algorithm [Kildall 1973], outlined in Figure 1, to arrive at our analysis �xpoint fixp :

Vert → StateAnn. At a high level, we start by mapping each vertex Vert to the empty map

� ∈ StateAnn; then repeatedly

(1) choose some vertex v ∈ Vert,

(2) use our current mapping π : Vert → StateAnn to get σ = π (v) ∈ StateAnn,

(3) run that through our �ow function to get σ ′ = flowAnn(inst(v),σ ),
(4) update to get π ′

where for each edge from v to some node u we have π ′(u) = π (u) t σ ′
.

In that last step we elementwise let (σ1 t σ2)(x) = σ1(x) t σ2(x) for σ1,σ2 ∈ StateAnn.

After this algorithm terminates, the �nal results fixp tell us, for each program point in v ∈ Vert

and each variable in x ∈ Var, some abstract value a ∈ Abst that “contains” all the possible values

which x could take on at v when the program is run. If a 6v safeAnn(x , inst(v)), then the analysis

has deemed that variable “unsafe” at that point, and we issue a warning to the programmer. The

analysis should also come with a proof that some semantic property holds if no warnings are issued.

Our framework lifts Abst to a larger set �Abst such that Abst is a subsemilattice of �Abst, then
uses it to de�ne a new static analysis using this larger set of abstract values. This lifting is detailed

in the following subsection. Also as explained in Subsection 2.2, we obtain a lifted ordering ṽ and

join t̃ on �Abst, which we can then use to lift the rest of the analysis.

We now accept programs using the extended set of annotations Ann = �Abst, and again apply

Kildall’s �xpoint algorithm to arrive at f̃ixp : Vert → State�Abst. As we will �nd, the pair (�Abst, t̃)
is a semilattice in the same way that (Abst,t) is, so we can simply replace t with t̃ in step 4 of

the inner loop. Then after the �xpoint algorithm terminates, we use ṽ instead of v to determine

when to issue a static warning.
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2.2 Semila�ice Li�ing
The AGT methodology provides the general setup for lifting our semilattice. To give meaning to

gradual abstract elements from �Abst ⊇ Abst, AGT requires an injective function γ : �Abst →

P+(Abst). To ensure that the gradual analysis is a conservative extension of the static one, it must

be the case that γ (a) = {a} whenever a ∈ Abst. To maximize �exibility of the gradual analysis, we

must have some element ? ∈ �Abst such that γ (?) = Abst. This γ then automatically induces lifted

predicates such as ṽ:

ã ṽ b̃ i� ∃a ∈ γ (ã),b ∈ γ (b̃) s.t. a v b

Then as mentioned above, this lifted ordering appears in the second stage of the analysis: given a

table of abstract values for each variable at each program point, how do we determine when to give

a static warning? But for the �rst stage, ṽ is insu�cient. Observe that ? ṽ a ṽ ? for all a ∈ �Abst,
so ṽ is not a partial order. Thus we cannot use ṽ to induce a join for use in the �xpoint algorithm.

To address this, we must be able to lift functions on �Abst, not just predicates. We are given a

function t : Abst × Abst → Abst and two elements ã, b̃ ∈ �Abst, and we want to produce some

ã t̃b̃ ∈ �Abst. Via AGT, our �rst step is to construct the set {atb : a ∈ γ (ã)∧b ∈ γ (b̃)} ∈ P+(Abst).

Thus we need a function α : P+(Abst) → �Abst. In AGT, this α forms a Galois connnection with γ ,
so the following must hold:

For any â ∈ P+(Abst) and b̃ ∈ �Abst,
(1) â ⊆ γ (α(â)) and

(2) â ⊆ γ (b̃) =⇒ γ (α(â)) ⊆ γ (b̃).

It can be shown that if α exists, it must be unique. Speci�cally,

α(â) = γ−1

©­­­­«
⋂

b̃ ∈�Abst
γ (b̃)⊇â

γ (b̃)

ª®®®®¬
where γ−1

is well-de�ned because γ is injective, but is only a partial function because γ is not

necessarily surjective; thus, α might not necessarily exist. But if it does, we can then de�ne the

lifted join

ã t̃ b̃ = α({a t b : a ∈ γ (ã) ∧ b ∈ γ (b̃)})

to use in the �xpoint algorithm.

So far, we have glossed over the construction of �Abst itself, other than the fact that it must be a

superset of Abst∪ {?}. It should now be clear that the details of this construction are an important

design choice, since a poor choice of �Abst can prevent the existence of α . Notice also that the

characteristics of α determine the characteristics of t̃, which are used in the proofs of termination

and soundness of the analysis:

• Commutativity: a t b = b t a, so for instance, the analysis is the same regardless of whether

the “then” branch or the “else” branch of an if-statement is analyzed �rst.

• Idempotency: a t a = a, so for instance, the analysis remains the same when an if-then-else-

statement with both empty branches is inserted.

• Transitivity: a t (b t c) = (a t b) t c , so for instance, the analysis is the same regardless of

whether a nested if-clause conditions on x �rst and then y, or the other way around.

In fact, these are exactly the conditions for t to be the join operation of a semilattice structure.

Furthermore, for the �xpoint computation to terminate, that semilattice must have �nite height.
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Fig. 2. Le�: The original (unli�ed) semila�ice.Middle: The li�ed semila�ice ordering, where each directed

edge a → b means a ṽ b. (Self-loops are omi�ed.) This li�ed relation is no longer a partial order. Right: The
semila�ice structure induced by the li�ed join t̃. Specifically, this is the Hasse diagram of the partial order

{(a,b) : a t̃ b = b}.

We have already mentioned that the lifted relation ṽ does not form a semilattice. However, the

surprising, and novel, result of this work is that the lifted join t̃ does form a semilattice, but only if

the lifted set �Abst is chosen correctly.

Commutativity is trivially satis�ed. Our set �Abst cannot contain any element ã such that γ (ã)
is not a subsemilattice of Abst, since that breaks idempotency. We also cannot in general choose�Abst = Abst ∪ {?}, because this produces a non-associative join on even simple semilattices such

as Abst = {A,B,>} where A,B @ > but A a B and B a A. (See Figure 2 for an illustration of a

“correct” lifting of this semilattice, which adjoins more than just one element.) On the other hand,

we cannot let �Abst contain an element for every subsemilattice (or even just for every convex

subsemilattice; see Cheong and Jones [2003]) of �Abst, since then �Abst with t̃ might not have

�nite height even if Abst with t has �nite height.

To satisfy all of our constraints, we choose�Abst = Abst ∪ {?} ∪ {a? : a ∈ Abst} where γ (a?) = {b ∈ Abst : a v b}

since it can be shown that if Abst has �nite height h, then this choice of �Abst always has an

abstraction function, yielding a t̃ operation which induces a semilattice structure with height h + 1.
Note that in this lifting,

>? = > because γ (>?) = {a ∈ Abst : > v a} = {>} = γ (>),

and similarly if L has a bottom element ⊥ then

⊥? = ? because γ (⊥?) = {a ∈ Abst : ⊥ v a} = Abst = γ (?).

This means that if Abst has n elements then �Abst has either 2n or 2n − 1 elements.

2.3 Runtime Checks
The above theory de�nes the static part of our gradual analysis framework. It is usable on its own as

a method to reduce false positives by providing the programmer with a broader set of annotations

which support both pessimistic and optimistic uncertainty. Our prototype, described in Section 4,

only implements the static part of the analysis, and does not insert runtime checks because program

transformation is not supported by the Infer framework. However, it is “unsound”, in that the

absence of warnings from a gradual analysis does not provide the same semantic guarantee provide

by the underlying static analysis. To remedy this, one can add runtime checks based on the analysis

results. This subsection will not be quite as rigorous as 2.1, but should be straightforward enough

given the rest of the theory already described.

First, we concretize our set of absolute values via a set of concrete (runtime) values Val and a

concretization function conc : Abst → P+(Val). We will then assume that, for each a ∈ Abst, the
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predicate in ⊆ Val × Abst de�ned by

c in a ⇐⇒ c ∈ conc(a)

is computable. We also assume that we have checkAnn : Var × Abst → InstAnn such that the

semantics of checkAnn(x ,a) are to get the value c ∈ Val currently held locally by x , then if c in a,
continue along the control �ow graph; or if ¬(c in a), step into a dedicated error state.

After we run our �xpoint algorithm to get our analysis results f̃ixp and ensuring that there

are no static warnings, we transform the input program by inserting these runtime checks.

Speci�cally, for every v ∈ Vert, let σ = f̃ixp(v); then for every x ∈ Var, let ã = σ (x). Let
b =

⊔
γ (safe�Abst(x , inst(v))). If it isn’t the case that a v b for every a ∈ γ (ã), then insert a new

vertex u before v such that inst(u) = checkAnn(x ,b). Iterate this process until no troublesome

points remain.

If (as in our null-pointer case study) the set of concrete values is the set of pointers, and Abst

only distinguishes null from non-null, this is e�ciently computable. But for instance, an analysis

of a language with higher-order functions would be more di�cult to gradualize, since in would

be undecidable. This problem is not intractable, and has been discussed at length in the gradual

typing literature. However, it is by no means trivial, and would require further research to adapt it

to our data�ow analysis setting.

3 CASE STUDY: A SIMPLE NULL-POINTER ANALYSIS
We will now illustrate our general framework in the context of null-pointer analysis. First, recall

that Section 2 de�nes a program as its control �ow graph. A complete illustration of our formal

framework would fully de�ne the instruction set for this control-�ow-graph-based IR and and

a conversion from source code to this IR. However, for brevity, we will instead just display the

Java source code (see Figure 3), and include portions of the explicit formalism where it would be

relevant.

An example execution of this code might be as follows:

java Bucket.java maple pecan grape almond walnut cherry apricot

The output would look something like this:

2 of apricot wood

5 of cherry pie

1 of walnut wood

5 of almond pie

5 of grape pie

5 of pecan pie

7 of maple wood

0 of apple wood

Exception in thread "main" java.lang.NullPointerException

at Bucket.main(Bucket.java :45)

This program handles Buckets, each of which can hold some amount of either chopped wood of

some woodType, or baked pies of some pieFlavor. Thus, its contents can be either edible or not.

A bucket can also be nested inside of some parent bucket. The chop method adds to the bucket

one unit of a speci�c woodType, discarding the previous contents of the bucket if they are not of the
same woodType. The bake method adds �ve pies of a speci�c pieFlavor to the bucket, discarding

any previous contents because even pies of the same �avor would be less fresh than these new pies.

The main method takes in a list of plant types, and for each one, repeatedly either chops wood

from that plant of that type or bakes pies using the fruit from that plant. It also nests all of these
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1 class Bucket {

2 @Nullable Bucket parent = null;

3 @NonNull Boolean edible = Boolean.FALSE;

4 String woodType = "apple";

5 String pieFlavor = null;

6 @NonNull Integer amount = 0;

7

8 void chop(@NonNull String woodType) {

9 this.edible = Boolean.FALSE;

10 this.pieFlavor = null;

11 if (! woodType.equals(this.woodType ))

12 this.amount = 0;

13 this.woodType = woodType;

14 this.amount ++;

15 }

16

17 void bake(@NonNull String pieFlavor) {

18 this.edible = Boolean.TRUE;

19 this.woodType = null;

20 this.pieFlavor = pieFlavor;

21 this.amount = 5;

22 }

23

24 public static void main(@NonNull String [] args) {

25 java.util.List <Bucket > buckets = new java.util.LinkedList <>();

26 buckets.add(new Bucket ());

27 for (String name : args) {

28 Bucket bucket = new Bucket ();

29 double cap = 10* Math.random ();

30 for (int i = 0; i < cap; i++) {

31 if (Math.random () < 0.5)

32 bucket.chop(name);

33 else

34 bucket.bake(name);

35 }

36 bucket.parent = buckets.get (0);

37 buckets.add(0, bucket );

38 }

39 System.out.print(buckets.get (0). amount );

40 for (Bucket bucket : buckets) {

41 String type = bucket.edible

42 ? bucket.pieFlavor + "␣pie"

43 : bucket.woodType + "␣wood";

44 System.out.println("␣of␣" + type);

45 System.out.print(bucket.parent.amount );

46 }

47 }

48 }

Fig. 3. An example program.
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x ,y, z ∈ Var

a,b ∈ Ann

m ∈ Method

f ∈ Field

κ ∈ Class

n ∈ N

InstAnn ::= methodm(x1@a1, . . . ,xn@an) | x := null | x := true

| x := false | x := n | x := κ.f @a | x := y.f @a

| x.f @a := y | x := new κ

| x := κ.m@a(y1@b1, . . . ,yn@bn)

| x := y.m@a(z1@b1, . . . , zn@bn) | if x | if not x

| return x@a | . . .

Fig. 4. Some portions of InstAnn for our null-pointer analysis case study.

buckets inside each other. Finally, in the second loop, it goes through and displays the contents of

each bucket, using the nestedness to access the amount of items in the next bucket before reaching

it in the iteration. The reader will note that this results in a NullPointerException at the end of

the list.

To analyze this program for null pointers, we will start with a pure static analysis, and then

gradualize it via the framework from subsection 2.1. The set Var is what one would expect; after

that, the �rst step is to de�ne our set of instructions, of which we show part in Figure 4. (The

sets of Method, Field, and Class names are straight forward just as Var was.) For an example

of a control-�ow graph in this language, see the translation of the chop method in Figure 5. Each

method forms its own separate connected component of the control-�ow graph.

Then for the analysis itself, we must �rst have a semilattice of abstract values (see Figure 6). In

this case, we need only two: >, which can represent any pointer, and N , which can represent any

non-null pointer. In our syntax, we represent these as @Nullable and @NonNull respectively. After
we gradualize this semilattice, we will have a third value ?, which we represent via the annotation

@Unknown (omitted by convention in the source code, but present in the control-�ow graph IR, as

seen in Figure 5). Then to complete the initial static analysis, we also need a �ow function and a

safety function. Partial versions of flowAnn and safeAnn are shown in Figure 7 and Figure 8.

The last step in this case study is to lift Abst to �Abst and apply the resulting gradual analysis. The
lifted semilattice itself is shown in Figure 6. Here are some observations of the result of analyzing

the program from Figure 3 via �Abst, flow, and safe:

• Since the �elds edible and amount are @NonNull, the analysis doesn’t complain when they

are (implicitly) deferenced in lines 14 and 41.

• Since the parameter woodType in the chopmethod is @NonNull, the analysis doesn’t complain

when it is dereferenced (to call equals) in line 11.

• Since the �elds woodType and pieFlavor are not explicitly annotated, they are implicitly

marked as @Unknown (that is, “?”) by the analysis. Intuitively, this means that the analysis

knows that they could possibly be null, so it doesn’t complain when they are explicitly

assigned null values in lines 10 and 19; but on the other hand, since they aren’t explicitly

marked as @Nullable, the analysis also doesn’t complain when they are dereferenced in

lines 42 and 43 for concatenation.
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method chop(woodType@NonNull)

this.edible@NonNull := false

this.pieFlavor@Unknown := null

current := this.woodType@Unknown

condition := woodType.equals@Unknown(current@Unknown)

if condition if not condition

zero = 0

this.amount@NonNull = zero

this.woodType@Unknown = woodType

plusOne = this.amount@NonNull

one = 1

plusOne = Integer.sum@Unknown(plusOne@Unknown, one@Unknown)

this.amount@NonNull = plusOne

Fig. 5. A possible control-flow graph for the chop method.

>

N

?

N >

>

?

N

Fig. 6. Le�: The original null-pointer semila�ice. Middle: The li�ed semila�ice ordering, where each directed

edge a → b means a ṽ b. (Self-loops are omi�ed.) Right: The semila�ice structure induced by the li�ed join t̃.

• The for loops on lines 27–38 and lines 40–46 implicitly use iterators, which are part of the

Java standard library and thus not annotated with @Nullable or @NonNull. Thus, all their
method parameters and return values are given the “?” (that is, @Unknown) annotations by
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flowAnn(x := null,σ ) = σ [x 7→ >]

flowAnn(x := y.f @a,σ ) = σ [x 7→ a;y 7→ N ]

flowAnn(x.f @a := y,σ ) = σ [x 7→ N ]

flowAnn(x := new κ,σ ) = σ [x 7→ N ]

flowAnn(x := y.m@a(z1@b1, . . . , zn@bn),σ ) = σ [x 7→ a]

Fig. 7. Part of a possible flow function for a null-pointer analysis.

safeAnn(y,x := y.f @a) = N

safeAnn(x ,x.f @a := y) = N

safeAnn(y,x.f @a := y) = a

safeAnn(zi ,x := y.m@a(z1@b1, . . . , zn@bn)) = bi

safeAnn(x , return x@a) = a

Fig. 8. Part of a possible safety function for a null-pointer analysis.

default, so the analysis doesn’t complain when name is passed as a NonNull parameter in

lines 32 and 34, or when bucket is dereferenced on lines 41–43 and 45.

• Finally, since the �eld parent is explicitly @Nullable, the analysis complains when it it

dereferenced on line 45.

As noted in the last bullet point, the analysis thus only raises one warning for this code, on line 45,

and that warning turns out to be a true positive, as evidenced by the NullPointerException that

results when this program is run.

4 PRELIMINARY EMPIRICAL EVALUATION
We used the abstract interpretation framework in Facebook’s Infer tool to build a prototype of a

gradual null pointer analyzer for Java, which we’ll call “Graduator”, based on the development

presented above. To evaluate this prototype, we used the 18 repositories which Uber used to evaluate

their NullAway analysis tool [Banerjee et al. 2019]. Facebook has two existing null-pointer checkers

in Infer, called Eradicate and Nullsafe; we ran those along with Graduator on the 15 repositories of

those 18 which we were able to successfully build, with the following results:

• Eradicate gave 1489 static warnings.

• Nullsafe gave 654 static warnings.

• Graduator gave 228 static warnings.

These are all repositories for which NullAway reports no static errors, and Uber has found no

instances of null-pointer dereferences caused by a false negative in their tool. According to Banerjee

et al. [2019]: “NullAway aims to have no false negatives in practice for code that it checks, while
reducing the annotation burden wherever possible. NullAway’s checks to ensure @NonNull �elds

are properly initialized . . . are unsound, but also require far fewer annotations than a previous sound

checker . . . . Similarly, NullAway unsoundly assumes that methods are pure, i.e., side-e�ect-free

and deterministic . . . . In both cases, we hvae validated that neither source of unsoundness seems to
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lead to real-world NPEs for Uber’s Android apps, based on crash data from the �eld.” Thus, it seems

fairly reasonable to assume that these are all false positives. We examined all these 2371 warnings

by hand, and found only 57 that could possibly be true positives; all the rest were due to systematic

imprecision in the analysis tools.

In these results we see weak evidence that our Graduator tool tends to produce fewer false posi-

tives than Facebook’s existing null-pointer analysis tools. However, since the analyzed repositories

were already believed not to contain null pointer errors, it is still very unclear whether Graduator is

preferable to Eradicate or Nullsafe, since it is possible that Graduator has a signi�cantly higher false

negative rate, at least in the static portion. Experiments on buggy repositories should be performed

to compare the false negative rates of Graduator with other tools.

5 RELATEDWORK
We have already related our work to the most-closely related research, including work on abstract

interpretation [Cousot and Cousot 1977], the �xpoint algorithm [Kildall 1973], gradual typing

properties [Siek et al. 2015], constructing gradual type systems from static ones [Garcia et al. 2016],

gradual veri�cation [Bader et al. 2018], and current null-pointer analysis tools [Banerjee et al. 2019].

We empirically compared Graduator to existing Facebook Infer checkers in Section 4. Here we

discuss the approaches behind similar tools. TheGranullar type system fromBrotherston et al. [2017]

extends a static pluggable type system that enforces null-safety via @Nullable and @NonNull type

annotations with support for the @Dynamic type similar to ?. The resulting type system generates

runtime checks whenever a @Dynamic reference is pseudo-assigned to a @NonNull reference.

This guarantees that null-pointer exceptions cannot occur in checked code when interacting with

unchecked software components. Our approach di�ers from Granullar’s approach in that we do not

draw boundaries between checked and unchecked code; every �eld, argument, and return value is

either implicitly ?, explicitly N or >. Thus, our approach is more �ne-grained.

NullAway [Banerjee et al. 2019] reduces the annotation burden of static pluggable type checking

for null-pointer exceptions through targeted unsound assumptions. They aim for no false negatives

in practice on checked code. Of course, this di�ers from our approach by not trying to be sound.

Instead of letting optimistic assumptions go unchecked, we inject corresponding runtime checks to

verify them.

Some related work in gradual typing is as follows. The concept of gradual union types has been

explored by Toro and Tanter [2017]. This is related in that null-pointer analyses can be thought of

in terms of �ow-sensitive union types. Toro and Tanter [2017] provides a novel construct yielding

the bene�ts from both tagged and untagged unions. Interestingly, when re�ned using the speci�c

example of nullable pointers, these new gradual unions are essentially the same as the treatment

of nullable pointers in modern programming languages: static checking for nullability is nearly

absent, so checks must be performed at runtime. In comparison, our approach provides a bit more

static information.

Another related e�ort in gradual typing, is recent work on gradual re�nement types [Lehmann

and Tanter 2017]. In that approach, the AGT methodology is applied to a functional language in

which types can be re�ned by logical predicates drawn from a decidable logic. The present work

is in a di�erent context, namely �rst-order imperative programs as opposed to higher-order pure

functional programs. This di�erence has an impact on the technical development. Additionally, we

provide a runtime semantics designed for the gradual program analysis setting (similar to work on

gradual veri�cation [Bader et al. 2018]), rather than adapting the evidence-tracking approach set

forth by the AGT methodology and used for gradual re�nement types.
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6 CONCLUSION
While the AGT framework has been very successful in a variety of formal type systems, this

is its �rst application to program analysis. We show how to gradualize an arbitrary data�ow

analysis to demonstrate the applicability of the AGT framework in the analysis setting; this lays

the groundwork for the gradualization of far more sophisticated analyses than the simple case

study demonstrated above.

The draw of AGT in general is that it tends to yield results that are about as good as (or better

than) what one would reach from an initial, intentional e�ort to gradualize the system. But AGT is

essentially a mechanical process, so it removes a lot of the error-prone nature of the gradualization

work. The fact that the prototype of our case study ends up behaving similarly to state-of-the-art

tools like Facebook Infer is an encouraging indicator that this line of work may be fruitful, although

more rigorous evaluation needs to be done in the near future.

As mentioned in section 4, more experiments should be performed to determine whether the

static false negative rate of our approach is tolerable. However, these false negatives only make

our tool unsound in the absence of dynamic checks. We have outlined a basic theory for insert

runtime checks, but it would be desirable to have a more general theory that doesn’t require a

computable “in” predicate; perhaps such a theory should take inspiration from transient gradual

typing [Vitousek et al. 2017]. Finally, while our gradual analysis framework is general and can be

applied to arbitrary data�ow analyses, that generality could be made more composable by recasting

our work as an abstract interpretation component in the sense developed by Keidel and Erdweg

[2019].
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